A properties of atomic models of structure of eukaryotic triple complex eRF1 . mRNA . tRNAPhe containing human class-1 polypeptide release factor eRF1 at the A-site of human 80S ribosome, mRNA and P-site tRNAPhe, obtained before, are considered. The stricture of the complex is described using high resolution NMR structure of eRF1 M-domain. The structural properties of distribution of chemical cross-links are investigated, which allows us to choose correct model of positioning of the eRF1 molecule in ribosome A-site relative to stop codon of mRNA. A distributions of crosslinks between photoactivatable perfluoroaryl azide group of modified nucleotides of mRNA analogues and eRF1 molecule are modeled via molecular dynamics method. Twelve different mRNA analogues with modified nucleotides of stop signal in positions +4 to +9 with respect to the first nucleotide of the P-site codon are modeled. It was shown that only one of the two models of complex eRFI . mRNA . tRNA gives cross-link distribution in a good agreement with experimental data. A new features of the final structure of triple complex eRF1 . mRNA . tRNA is spatial proximity of stop-codon nucleotides to the C-domain of the eRF1, which explains previously obtained cross-link experimental data.

Download full-text PDF

Source

Publication Analysis

Top Keywords

erf1
9
release factor
8
factor erf1
8
mrna
8
triple complex
8
complex erf1
8
erf1 mrna
8
erf1 molecule
8
modified nucleotides
8
mrna analogues
8

Similar Publications

Eukaryotic translation release factor eRF1 is an important cellular protein that plays a key role in translation termination, nonsense-mediated mRNA decay (NMD), and readthrough of stop codons. The amount of eRF1 in the cell influences all these processes. The mechanism of regulation of eRF1 translation through an autoregulatory NMD-dependent expression circuit has been described for plants and fungi, but the mechanisms of regulation of human eRF1 translation have not yet been studied.

View Article and Find Full Text PDF

Premature termination codon (PTC) diseases, arising as a consequence of nonsense mutations in a patient's DNA, account for approximately 12% of all human disease mutations. Currently there are no FDA approved treatments for increasing PTC readthrough in nonsense mutation diseases, although one translational readthrough inducing drug, ataluren, has had conditional approval for treatment of Duchenne muscular dystrophy in Europe and elsewhere for 10 years. Ataluren displays consistent low toxicity in clinical trials for treatment of several different PTC diseases, but its therapeutic effects on such diseases are inconsistent.

View Article and Find Full Text PDF

The AP2/ERF family constitutes one of the largest groups of transcription factors in the Solanaceae. AP2/ERF contributes to various plant biological processes, including growth, development, and responses to various stresses. The origins and functional diversification of AP2/ERF within the Solanaceae family remain poorly understood, primarily because of the complex interactions between whole-genome duplications (WGDs) and tandem duplications.

View Article and Find Full Text PDF

Identification of new therapeutic targets related to endoplasmic reticulum stress and mitochondrial dysfunction to reduce the risk of rupture in degenerative ascending aortic aneurysm.

Clin Investig Arterioscler

October 2024

Facultad de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, España; CIBER de Enfermedades Cardiovasculares, CIBERCV, Instituto Carlos III (ISCIII), Madrid, España. Electronic address:

Background: Ascending Thoracic Aortic Aneurysm (ATAA) is a progressive dilation of the aorta that can be complicated by its dissection leading to death in 80-90% of the patients. When associated with aging and atherosclerosis, the outcome is worse and reconstructive surgery is the only effective therapy. Our objective was to characterize differential expressed genes (DEG) involved in endoplasmic reticulum (ER) and mitochondria dysfunction in patients with degenerative ATAA.

View Article and Find Full Text PDF

The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!