A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of entrapment efficiency and drug phase distribution of submicron emulsions loaded silybin. | LitMetric

This paper compared the performance of ultrafiltration (UF), ultracentrifugation (UC) and microdialysis (MD) for determining the entrapment efficiency (EE) of submicron emulsions (SE) loaded with a model drug, silybin (SB). Also, a novel way was created to evaluate the drug phase distribution of SE. The EE of SEI, SEII and SEIII with a range of particle sizes (109.8, 171.7 and 213.2 nm) and the drug phase distribution of SEII and SEIII were separately determined by the three methods. The EEs of SEI were 99.8%, 91.1%, 84.4% determined by MD, UF, UC, respectively, and the EEs of SEII and SEIII were 99.5%, 86.4%, 72.1% and 99.4%, 84.3%, 66.3%, separately. The accuracy of MD to determine EE of SE is much less than that of UF. Although UC is the fastest and most simple to use, its results are the least reliable. The sequence of the amount of drug in SE is as follows: O/W interface, aqueous phase and oil phase. Over 80% of SB was in the O/W interface of SEII and SEIII individually. The method created is reliable for quantifying the phase distribution of drug in submicron emulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02652040802211741DOI Listing

Publication Analysis

Top Keywords

phase distribution
16
seii seiii
16
drug phase
12
submicron emulsions
12
entrapment efficiency
8
emulsions loaded
8
o/w interface
8
drug
6
phase
6
determination entrapment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!