This present study is a preliminary exploration of the affinity between a carboxylic model drug ibuprofen and aluminum hydroxide. Ibuprofen was comilled with aluminum hydroxide in different weight ratios in the solid state and was characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. XRD and SEM studies indicated complete interaction of ibuprofen with aluminum hydroxide and complete amorphization of aluminum hydroxide-ibuprofen complexed salt as well, on comilling with aluminum hydroxide at 1:2 ratio. FTIR data showed the disappearance of acid carbonyl peak with the appearance and the corresponding increase in absorbance of new signal at 1,682 cm(-1) in the 1:1 and 1:2 ibuprofen-aluminum hydroxide-comilled powder. The accompanied increase in the absorbance of carboxylate peak in the ibuprofen-aluminum hydroxide physical mixture, and 1:0.1, 1:0.5, 1:1, and 1:2 (IBA(pm), and IB(1)A(0.1), IB(1)A(0.5), IB(1)A(1), and IB(1)A(2), respectively) comilled powder indicated an acid-base reaction between ibuprofen and aluminum hydroxide. On storage at 40 degrees C and 75% relative humidity (RH) for 10 weeks, XRD study showed the absence of reversion to the crystalline state and FTIR data revealed continued increase of new signal at 1,682 cm(-1) relative to carboxylic acid peak and no reappearance of carboxylic acid peak. In vitro dissolution studies revealed that the percent release of ibuprofen from the aluminum hydroxide-comilled powder is in the following order: IB(1)A(2) < IB(1)A(1) < ibuprofen crystal < ibuprofen milled alone < IB(1)A(0.1) < IB(1)A(0.5). Aluminum metal cation might have interacted to form a complex through the carboxyl and carbonyl groups of ibuprofen. Improved dissolution of drug associated with IB(1)A(0.1) and IB(1)A(0.5) is because of the absence of a new signal at 1,682 cm(-1) and improved amorphization of the drug to some extent. Dissolution of drug affected in IB(1)A(2) and IB(1)A(1) may be because of the insoluble stable complex formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639040801901868 | DOI Listing |
BMJ Open
January 2025
Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
Introduction: Persistent throat symptoms (PTS) are indicators for over 60 000 new patient referrals to NHS secondary care annually. PTS have been attributed to manifestation of gastro-oesophageal reflux disease (GORD) with the hypothesis that gastric refluxate damages and irritates the mucosa of the upper aerodigestive tract. Symptoms of PTS and GORD are commonly treated with proton pump inhibitors (PPIs) or alginates are often, incorrectly, advocated.
View Article and Find Full Text PDFBiomaterials
January 2025
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China. Electronic address:
T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors.
View Article and Find Full Text PDFLangmuir
January 2025
Information Device Science Laboratory, Division of Materials Science, Nara Institute of Science and Technology, Ikoma City, Nara 630-0192, Japan.
Int J Pharm
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health (School of Life Science), Xiamen University, Xiamen, Fujian 351002, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:
The respiratory mucosa serves as a critical barrier against the invasion of pathogens. Effective mucosal vaccines are essential for enhancing local immunity. However, there is an urgent need to develop new mucosal adjuvants.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!