Upon incubation at 37 degrees C in the absence of Ca2+ ions, pathogenic yersiniae release large amounts of pYV plasmid-encoded proteins called Yops that are involved in pathogenesis. Yersinia enterocolitica also expresses an outer membrane protein that is considered an adhesin and called YadA (previously called P1 or YopA). The production of Yops is coordinately regulated by a 20-kb region of the plasmid referred to as the Ca2+ dependence region and containing at least four loci called virA, virB, virC, and virF. The virF gene encodes a key transcriptional activator of yop genes. We have shown here that virF is also required for transcription of yadA and that virB is necessary for full transcription of the yop and yadA genes. In contrast, mutations in genes virA and virC had only a weak influence on the transcription of yop and yadA genes. These mutations did not affect the production of YadA but they completely inhibited the translocation of Yops from the intracellular compartment to the extracellular milieu. We inferred from these data that virA and virC are involved in the specific transport of Yops. We analyzed the 8.5-kb virC region and showed that it is most probably a single operon containing 13 open reading frames called yscA to yscM (for Yop secretion). Protein YscC has a putative signal sequence and shares significant homology with outer membrane proteins involved in the secretion of pullulanase by Klebsiella pneumoniae (PulD) or in the assembly of filamentous bacteriophages (gene IV product). At least the putative products of yscD, yscJ, and yscL were shown to be required for the export of Yops. YscJ turned out to be YlpB, a lipoprotein that we had detected previously. The yscM gene shares homology with yopH, the adjacent gene on the pYV plasmid. Its product does not appear to be necessary for the production of Yops. Transcription of the virC operon was subjected to the same regulation as the yop genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC208188PMC
http://dx.doi.org/10.1128/jb.173.16.4994-5009.1991DOI Listing

Publication Analysis

Top Keywords

virc operon
8
involved secretion
8
yersinia enterocolitica
8
outer membrane
8
production yops
8
yop genes
8
transcription yop
8
yop yada
8
yada genes
8
vira virc
8

Similar Publications

-mediated transformation is an essential tool for functional genomics studies and crop improvements. Recently developed ternary vector systems, which consist of a T-DNA vector and a compatible virulence () gene helper plasmid (ternary helper), demonstrated that including an additional gene helper plasmid into disarmed strains significantly improves T-DNA delivery efficiency, enhancing plant transformation. Here, we report the development of a new ternary helper and thymidine auxotrophic strains to boost -mediated plant transformation efficiency.

View Article and Find Full Text PDF

Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.

Nat Commun

April 2020

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.

Bacterial Rhs proteins containing toxic domains are often secreted by type VI secretion systems (T6SSs) through unclear mechanisms. Here, we show that the T6SS Rhs-family effector TseI of Aeromonas dhakensis is subject to self-cleavage at both the N- and the C-terminus, releasing the middle Rhs core and two VgrG-interacting domains (which we name VIRN and VIRC). VIRC is an endonuclease, and the immunity protein TsiI protects against VIRC toxicity through direct interaction.

View Article and Find Full Text PDF

Agrobacterium tumefaciens is a plant pathogen that has the natural ability of delivering and integrating a piece of its own DNA into plant genome. Although bacterial non-coding RNAs (ncRNAs) have been shown to regulate various biological processes including virulence, we have limited knowledge of how Agrobacterium ncRNAs regulate this unique inter-Kingdom gene transfer. Using whole transcriptome sequencing and an ncRNA search algorithm developed for this work, we identified 475 highly expressed candidate ncRNAs from A.

View Article and Find Full Text PDF

[Methods for the detection of Agrobacterium from plant, soil and water samples].

Rev Argent Microbiol

April 2012

Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina.

The genus Agrobacterium includes phytopathogenic bacteria that induce the development of root crown galls and/or aerial galls at the base of the stem or hairy roots on more than 600 species of plants belonging to 90 dicotyledonous families and non-pathogenic species. These bacteria being natural soil inhabitants are particularly difficult to eradicate, which is a problem in nurseries where more than 80% of infections occur. Since early detection is crucial to avoid the inadvertent spread of the disease, the aim of this work was to develop sensitive and precise identification techniques by using a set of semi-selective and differential culture media in combination with a specific PCR to amplify a partial sequence derived from the virC operon, as well as a multiplex PCR on the basis of 23SrDNA sequences, and biological assays to identify and differentiate species and biovars of Agrobacterium obtained either from soil, water or plant samples.

View Article and Find Full Text PDF

Geraldton Wax as a New Host for Agrobacterium tumefaciens in Argentina.

Plant Dis

June 2006

CIDEFI - CIC, Facultad de Ciencias Agrarias y Forestales, UNLP, cc 31, 1900 La Plata, Argentina.

During 2004, Geraldton wax plants (Chamaelaucium uncinatum cv. BM Violet) from commercial greenhouses in La Plata, Argentina showed gall-like structures on collars and roots similar to those reported by Carsten et al. (2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!