The objective was to investigate the familial occurrence of the neurodegenerative condition amyotrophic lateral sclerosis (ALS), Parkinson's disease and dementia in the relatives of Irish ALS patients. A retrospective case control chart review study was conducted to extract the neurological family histories of Irish ALS patients and controls who attended the National Neurological Centre between January 2001 and January 2006. In total, details were extracted from 197 ALS and 235 general neurology pedigrees. Using the recurrence risk, lambda, ALS (lambda (1st degree)=7.77), Parkinson's disease (lambda (1st degree)=2.67) and dementia (lambda (1st degree)=6.21) were reported more frequently in relatives of ALS patients compared to those of non-ALS controls. Within sporadic ALS kindreds, the presence of neurodegenerative disease was not uniformly distributed. This study supports the conjecture that neurodegenerative disease aggregates within ALS kindreds, and indicates a shared genetic susceptibility towards some neurodegenerative phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17482960802209664DOI Listing

Publication Analysis

Top Keywords

neurodegenerative disease
12
als kindreds
12
als patients
12
lambda 1st
12
als
9
parkinson's disease
8
irish als
8
disease
5
aggregation neurodegenerative
4
disease als
4

Similar Publications

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway.

J Neuroinflammation

January 2025

Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.

Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.

View Article and Find Full Text PDF

Saturated fat in an evolutionary context.

Lipids Health Dis

January 2025

Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.

Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!