Conclusion: The results of this study indicate that coenzyme Q10 reduces cochlear oxidative stress induced by acoustic overstimulation.

Objective: We investigated the effects of coenzyme Q10 on noise-induced hearing loss in guinea pigs.

Materials And Methods: Animals received water-soluble coenzyme Q10 intraperitoneally 2 h before noise exposure. Seven days after noise exposure (130 dB sound pressure level for 3 h), the auditory brainstem response (ABR) threshold shift and cochlear hair cell damage were assessed.

Results: We observed that the ABR threshold shift was significantly less in the coenzyme Q10 group than in the vehicle control group. In addition, the percentage of missing outer hair cells was lower in the coenzyme Q10 group than in the control group. Moreover, 2 days after administration of coenzyme Q10, increased antioxidative activity in the cochlea, as measured by analysis of hydroxy radical scavenging activity by electron spin resonance was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016480801891694DOI Listing

Publication Analysis

Top Keywords

coenzyme q10
28
water-soluble coenzyme
8
q10 noise-induced
8
noise-induced hearing
8
hearing loss
8
loss guinea
8
noise exposure
8
abr threshold
8
threshold shift
8
q10 group
8

Similar Publications

The study aimed to evaluate the potential protection against fractures of oral Q10 supplementation in the tibias of rats exposed to nicotine. Nicotine is known to negatively impact bone density and increase the risk of fractures, in addition to affecting other systems such as the gastrointestinal system, impairing its absorption capacity, negatively affecting bone health. To investigate this, eighty male rats were divided into four groups (n = 20) receiving either nicotine hemisulfate or saline solution (SS) for 28 days.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

BITS Pilani Hyderabad Campus, Hyderabad, Telangana, India; RMIT, Melbourne, VIC, Australia.

Background: Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is categorized as a complicated disorder of extreme fatigue lasting for at least six months without any underlying medical problem and currently has no concrete treatment regimen. This is associated with neurological complications like brain fog, insomnia, psychiatric disturbances and above all neuroinflammation. A chronic forced swim test model of CFS has been established since more than a decade at our laboratory.

View Article and Find Full Text PDF

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

Background: Coenzyme Q10 (CoQ10) is widely recognized for its powerful antioxidant properties, sparking considerable interest in its application within skincare treatments. However, its inherently poor water solubility has posed a major challenge in formulating effective skincare products.

Methods: This research aimed to develop and evaluate a water-soluble CoQ10 serum by forming a complex with hydroxypropyl β-cyclodextrin (HPβCD).

View Article and Find Full Text PDF

A thermophilic cellulase-producing bacterium, strain HSW-8, isolated from hot spring waters in South Korea, was subjected to a taxonomic analysis. Cells of strain HSW-8 were gram-stain-negative, facultatively anaerobic, rod-shaped, with optimum growth at 45 °C, pH 7.0, in the presence of 0% (w/v) NaCl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!