Sulforaphane, a cruciferous isothiocyanate compound, upregulates cytoprotective genes in liver, but its effects on antioxidants and phase 2 defenses in vascular cells are unknown. Here we report that incubation of rat aortic smooth muscle A10 cells with sulforaphane (0.25-5 microM) resulted in concentration-dependent induction of a spectrum of important cellular antioxidants and phase 2 enzymes, including superoxide dismutase (SOD), catalase, the reduced form of glutathione (GSH), glutathione peroxidase, glutathione reductase (GR), glutathione S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1). Sulforaphane also increased levels/activities of SOD, catalase, GSH and GST in isolated mitochondria of aortic smooth muscle cells. Time-dependent sulforaphane-induced increases in the mRNA levels for MnSOD, catalase, the catalytic subunit of gamma-glutamylcysteine ligase, GR, GST-A1, GST-P1, and NQO1 were observed. Pretreatment with sulforaphane (0.5, 1, and 5 microM) protected aortic smooth muscle cells from oxidative and electrophilic cytotoxicity induced by xanthine oxidase (XO)/xanthine, H2O2, SIN-1-derived peroxynitrite, 4-hydroxy-2-nonenal, and acrolein. Furthermore, sulforaphane pretreatment prevented intracellular accumulation of reactive oxygen species (ROS) after exposure of the cells to XO/xanthine, H2O2, or SIN-1. Taken together, this study demonstrates that in the aortic smooth muscle cells sulforaphane at physiologically relevant concentrations potently induces a series of total cellular as well as mitochondrial antioxidants and phase 2 enzymes, which is accompanied by dramatically increased resistance of these vascular cells to oxidative and electrophilic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12012-008-9020-4 | DOI Listing |
Nutrients
December 2024
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.
View Article and Find Full Text PDFCells
January 2025
Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.
View Article and Find Full Text PDFJ Surg Case Rep
January 2025
Department of Research, Universidad Francisco Marroquín, Guatemala City, Guatemala.
Popliteal artery pseudoaneurysms are rare, especially from acupuncture-related trauma. We report a 67-year-old male with hypertension, diabetes, chronic kidney disease, and an abdominal aortic aneurysm (AAA), who developed a popliteal pseudoaneurysm after acupuncture. Imaging confirmed the pseudoaneurysm and a 55 mm AAA.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!