We carry out simulations based on a four-layer Mie model to systematically analyze the sensing performance of ring resonator chemical vapor sensors. Two sensor configurations are investigated, in which a polymer layer is coated on either interior or exterior surface of a fused silica cylindrical ring resonator. Upon the interaction of the polymer and the vapor analyte, the refractive index (RI) and the thickness of the polymer layer change, leading to a spectral shift in the resonant modes that are supported by the ring resonator. The RI sensitivity and thickness sensitivity are studied as a function of the polymer coating thickness and RI, the ring resonator size and wall thickness, and resonant mode order and polarization. Similarities and differences between the two sensor configurations are also discussed. Our work should provide a general guidance in development of sensitive ring resonator chemical vapor sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.010254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!