Lysophosphatidic acid (LPA) has long been implicated in regulating vascular development via endothelial cell-expressed G protein-coupled receptors. However, because of a lack of notable vascular defects reported in LPA receptor knockout mouse studies, the regulation of vasculature by LPA receptors in vivo is still uncertain. Using zebrafish as a model, we studied the gene expression patterns and functions of an LPA receptor, LPA(1), during embryonic development, in particular, vascular formation. Whole-mount in situ hybridization experiments revealed that zebrafish lpa(1) (zlpa(1)) was ubiquitously expressed early in development, and its expression domains were later localized to the head region and the vicinity of the dorsal aorta. The expression of zlpa(1) surrounding the dorsal aorta suggests its role in vasculature development. Knocking down of zLPA(1) by injecting morpholino (MO) oligonucleotides at 0.625-1.25 ng per embryo resulted in the absence of thoracic duct and edema in pericardial sac and trunk in a dose-dependent manner. These zlpa(1)-MO-resulted defects could be specifically rescued by ectopic expression of zlpa(1). In addition, overexpression of vegf-c, a well-known lymphangiogenic factor, also partially ameliorated the inhibition of thoracic duct development. Taken together, these results demonstrate that LPA(1) is necessary for lymphatic vessel formation during embryonic development in zebrafish.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.08-106088DOI Listing

Publication Analysis

Top Keywords

lymphatic vessel
8
development zebrafish
8
lpa receptor
8
embryonic development
8
dorsal aorta
8
expression zlpa1
8
thoracic duct
8
development
7
lpa1
4
lpa1 essential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!