In an effort to develop novel anti-tumor, or cancer chemopreventive agents, a series of 2',5'-dialkoxylchalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with suitable aromatic aldehyde. In vitro screening revealed low micromolar activity (IC(50)) against several human cancer cell lines. Selective compound 10 induced an accumulation of A549 cells in the G(2)/M phase arrest which was well correlated with inhibitory activity against tubulin polymerization. Cytotoxic compounds 3 and 12 showed significant inhibitory effects on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage-like cells while cytotoxic compound 10 revealed potent inhibitory effect on TNF-alpha formation in RAW 264.7 cells in response to LPS. Compounds 3 and 10 also showed significant inhibitory effects on xanthine oxidase. The present results suggested that compounds 3 and 10 were potential to be served as cancer chemopreventive agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.06.031DOI Listing

Publication Analysis

Top Keywords

cancer chemopreventive
12
chemopreventive agents
12
compounds inhibitory
8
inhibitory effects
8
raw 2647
8
synthesis cytotoxic
4
cytotoxic anti-inflammatory
4
anti-inflammatory anti-oxidant
4
anti-oxidant activities
4
activities 2'5'-dialkoxylchalcones
4

Similar Publications

Clinical significance of lipid pathway-targeted therapy in breast cancer.

Front Pharmacol

January 2025

Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis.

View Article and Find Full Text PDF

Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2.

View Article and Find Full Text PDF

Purpose: The solid lipid nanoparticles of transitional metal complexes (POMs) were prepared with natural lipids with the aim of developing a safer therapeutic approach for cancer treatment.

Methods: Natural lipids were used to create solid lipid nanoparticles containing transitional metal complexes (POMs).

Results: The nanoparticles had displayed appreciable entrapment and loading percentage of PW.

View Article and Find Full Text PDF

Exploring the therapeutic potential of acorn extract in papillomavirus-induced lesions.

Vet World

November 2024

Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.

Background And Aim: Papillomaviruses (PVs) infections have been documented in numerous animal species across different regions worldwide. They often exert significant impacts on animal health and livestock production. Scientists have studied natural products for over half a century due to their diverse chemical composition, acknowledging their value in fighting cancer.

View Article and Find Full Text PDF

Long-term use of low-dose aspirin has been demonstrated to reduce cancer risk, but the duration of necessary medication use remains uncertain. This study aimed to investigate the long-term chemoprotective effect of aspirin among the Chinese population. This population-based study included all aspirin users between 2000 and 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!