AI Article Synopsis

  • The study analyzed particulate matter in eight size fractions (10 to 0.43 micrometers) using HS-SPME/GC-MS and SEM/EDX techniques to determine organic components and elemental composition.
  • HS-SPME proved to be an efficient method, requiring minimal sample amounts and avoiding solvents while still providing selective and clean results.
  • Findings indicated a strong relationship between particle size, composition, and emission sources, with smaller particles containing more elemental carbon and organic compounds, including carcinogens like PAHs from both rural and polluted areas.

Article Abstract

Physicochemical characterization of particulate matter fractionated into eight samples by size from 10 to 0.43 microm was performed by HS-SPME/GC-MS for the organic (semi-)volatile components and SEM X-ray microanalysis (SEM/EDX) for analysis of the elemental composition. The HS-SPME technique was shown to be efficient with respect to requiring an extremely low amount of material, being selective and clean and avoiding use of any solvents. Particulate matter was collected at four sites characterized by particular environmental locations and different pollution levels around the city of L'Aquila in central Italy. The results reveal a tight correlation between the particle composition, size, and the emission source. The analyses show also that the finer the particle, the higher its content of elemental carbon and organic compounds. Well-known carcinogens such as PAHs were detected among the identified organic compounds from both the rural and highly polluted sites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.200700056DOI Listing

Publication Analysis

Top Keywords

composition size
8
size emission
8
emission source
8
particulate matter
8
organic compounds
8
characterization atmospheric
4
atmospheric particulate
4
particulate relationship
4
relationship chemical
4
chemical composition
4

Similar Publications

Metals in Motion: Understanding Labile Metal Pools in Bacteria.

Biochemistry

January 2025

Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.

Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.

View Article and Find Full Text PDF

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres.

Int J Biol Macromol

January 2025

Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

Authentication of glass beads from Cultural Heritage: An interdisciplinary and multi-analytical approach.

Talanta

January 2025

Instituto de Historia (IH-CCHS), CSIC, C/ Albasanz 26-28, 28037, Madrid, Spain. Electronic address:

Analysis of glass-based artworks is important for authentication purposes. In recent years, there have been rapid advancements and improvements in the characterization of glass objects using different analytical approaches. The present study presents an interdisciplinary and multi-analytical authentication approach that provides useful tools and markers to unmask possible imitations, counterfeiting, and forgeries in Cultural Heritage glass beads by comparing the composition of historical and modern glass beads.

View Article and Find Full Text PDF

The Impact of Pistacia khinjuk plant gender on silver nanoparticle synthesis: Are extracts of root obtained from female plants preferentially used?

Biochem Biophys Res Commun

December 2024

Department of Nanotechnology, Institute of Science, Dicle University, 21280, Diyarbakir, Turkey. Electronic address:

Pistacia khinjuk, a dioecious plant native to Southeast Anatolia, Turkey, features distinct male and female individuals with varying bioactive compound profiles. This study investigates the gender-specific phytochemical composition of root extracts from male and female Pistacia khinjuk plants and their influence on the green synthesis of silver nanoparticles. Using natural bioactive compounds such as polyphenols, flavonoids, alkaloids, and terpenoids as reducing and stabilizing agents, the study demonstrates significant differences between the nanoparticles synthesized from male and female root extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!