Palladium catalysts have been studied for the Sonogashira-Hagihara coupling of aryl and heteroaryl bromides with terminal alkynes. Among the different biarylphosphines tested, 2-(di-tert-butylphosphino)-N-phenylindole (cataCXium Plntb) allows the efficient coupling of both activated and deactivated (hetero)aryl bromides in the presence of sodium tetrachloropalladate in tetramethylethylenediamine (TMEDA) at 80 degrees C. The catalyst system gives high turnover numbers (up to 14 100) and shows a broad tolerance towards functional groups such as OH and NH2, as well as heterocycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.200700004 | DOI Listing |
Org Lett
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Carbonylation of aryl electrophiles is an important method for constructing aromatic carbonyl compounds for materials science and pharmaceutical applications. However, there have been few studies on the carbonylation of abundant, inexpensive aryl chlorides. Moreover, the existing carbonylation methods usually require a high temperature, control of the CO pressure, and structurally complex catalysts and ligands.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest that the two methods follow different mechanisms.
View Article and Find Full Text PDFChemistry
December 2024
Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah, 711103, India.
We present, for the first time, an efficient ligand-free iron-copper catalyzed cross-coupling reaction involving a variety of aryl, heteroaryl halides (including chlorides, bromides, and iodides), and alkyl bromides with diverse aryl and aliphatic primary amides, conducted under solvent-minimized conditions. This economically competitive protocol successfully yielded the corresponding cross-coupling products, N-arylamides and N-alkylamides, in good to excellent yields with broad substrate scope (65 examples) and tolerance to several sensitive functionalities (including heterocycles). No conventional work-up is required for this protocol, and the developed method is applicable for gram-scale synthesis.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Synthetic Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States.
The synthesis of C1-functionalized β-carbolines from -Boc norharman is described. Substitution is realized by employing the Knochel-Hauser base (TMPMgCl·LiCl) followed by transmetalation with ZnCl and subsequent Negishi cross-coupling of the resulting organozinc species. A variety of aryl or heteroaryl bromides participated in this one-pot reaction sequence, allowing for rapid diversification of the β-carboline scaffold in moderate to excellent yields.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
The metal-halogen exchange reaction constitutes one of the most important preparative routes towards polar organometallic reagents such as aryllithium or Grignard reagents. However, despite extensive developments over the past eight decades, this fundamental organometallic elementary step has only been exploited stoichiometrically. Against this background, we demonstrate that the sodium-bromine exchange reaction can be implemented in a catalytic setting as a mean to activate C(sp)-Br bonds in a transition metal-free manner en route to the regioselective and general preparation of (hetero)aryl silanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!