A coin-sized passive emission colorimetric sensor (PECS) based on an enzymatic reaction and a portable reflectance photometry device were developed to determine the emission rates of formaldehyde from building materials and other materials found indoors in only 30 minutes on-site. The color change of the PECS linearly correlated to the concentration of formaldehyde aqueous solutions up to 28 microg/mL. The correlation between the emission rates measured by using the PECS and those measured by using a desiccator method or by using a chamber method was fitted with a linear function and a power function, and the determination coefficients were more than 0.98. The reproducible results indicate that the emission rates could be obtained with the correlation equations from the data measured by using the PECS and the portable reflectance photometry device. Limits of detection (LODs) were 0.051 mg/L for the desiccator method and 3.1 microg/m2/h for the chamber method. Thus, it was confirmed that the emission rates of formaldehyde from the building materials classified as F four-star (< 0.3 mg/L (desiccator method) or < 5.0 microg/m2/h (chamber method)), based on Japanese Industrial Standards (JIS), could be measured with the PECS. The measurement with PECS was confirmed to be precise (RSD < 10%). Other chemicals emitted from indoor materials, such as methanol, ethanol, acetone, toluene, and xylene, interfered little with the measurement of formaldehyde emission rates by using the PECS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es7029762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!