Nitrification in premise plumbing: role of phosphate, pH and pipe corrosion.

Environ Sci Technol

418 Durham Hall, Civil and Environmental Engineering Department Virginia Tech, Blacksburg, Virginia 24061, USA.

Published: June 2008

Nitrification in PVC premise plumbing is a weak function of pH over the range 6.5--8.5 and is insensitive to phosphate concentrations 5--1000 ppb. Lead pipe enhanced nitrification relative to PVC, consistent with expectations that nitrifiers could benefit from ammonia recycled from nitrate via lead corrosion. Relatively new copper pipe (< 1.5-years-old) did not allow nitrifiers to establish, but nitrifiers gradually colonized over a period of months in brass pipes when copper concentrations were reduced by pH adjustment or orthophosphate. Nitrifiers were inhibited by trace copper, but not by lead levels up to 8000 ppb. In some systems using chloramines, brass in plastic plumbing systems might be more susceptible to lead/copper leaching, and accelerated dezincification, due to lower pH values resulting from nitrification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es702483dDOI Listing

Publication Analysis

Top Keywords

premise plumbing
8
nitrification
4
nitrification premise
4
plumbing role
4
role phosphate
4
phosphate pipe
4
pipe corrosion
4
corrosion nitrification
4
nitrification pvc
4
pvc premise
4

Similar Publications

Aims: We investigated the combined effects of pipe materials and disinfection chemicals on bacterial community and its active RNA fraction in water and biofilms in a pilot-scale premise plumbing system.

Methods And Results: The changes in bacterial communities were studied within four pipelines using copper and cross-linked polyethylene (PEX) pipe with chlorine or chloramine disinfection. The total and active bacterial communities and the presence of opportunistic pathogens (Legionella spp.

View Article and Find Full Text PDF

Evaluating grease trap management practices: A case study from Seri Kembangan, Malaysia.

J Environ Manage

January 2025

Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address:

Sewerage blockages due to oil and grease deposition discharged from food premises remain a persistent issue globally. This study evaluates the degree of compliance of food premises in Seri Kembangan, Selangor, Malaysia with grease trap guideline, and investigates the factors affecting restaurants' compliance performance. Data were collected from 36 restaurants through a questionnaire-based interview consisting of questions about grease trap installation, operation, maintenance and waste disposal, followed by a walkthrough of the kitchen.

View Article and Find Full Text PDF

Hot water systems are the most frequent environment associated with the prevalence and growth of opportunistic premise plumbing pathogens (OPPPs). Previous studies identified water heaters as a source of waterborne diseases and concluded that design variables may contribute to their prevalence. A multifaceted approach was used to investigate the vertical stratification of the microbiome and selected OPPPs in an electric water heater tank connected to a home plumbing system simulator.

View Article and Find Full Text PDF

Cu- and Ag-mediated inactivation of in bench- and pilot-scale drinking water systems.

Appl Environ Microbiol

December 2024

Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Cincinnati, Ohio, USA.

(Lp) is an opportunistic drinking water pathogen that can cause infections through the inhalation of Lp-containing aerosols and can occur in premise plumbing systems. In this work, the use of copper (Cu) and silver (Ag) ions was evaluated at the bench and pilot scale to determine (i) the effective independent concentrations of copper and silver that are efficacious in inactivating Lp, (ii) the impact of various water quality parameters on the efficaciousness of copper and silver ions, and (iii) the effectiveness and practicality of using dissociation to produce ions at the pilot scale. At the bench scale, it was determined that 0.

View Article and Find Full Text PDF

Performance improvement of triple-doped nanocomposite membrane towards hairwork dyeing effluent reclamation approaching zero liquid discharge.

Chemosphere

November 2024

Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang, 453007, China. Electronic address:

It is highly anticipated that efforts will be made to raise the level of industrial effluent reclamation on the background of continuously minimizing waste stream based on preconcentration tool. For this purpose, a triple-doped nanocomposite (TFN-tri) membrane through partially alternative doping spiro-structured 2,2'-dimethyl-1,1'-biphenyl-4,4'-diamine dihydrochloride and flexible 4,4'-bipiperidyl dihydrochloride and continuous incorporating of molybdenum disulfide quantum dots was successfully fabricated. With the assistance of self-synthesized biodegradable flocculant pretreatment, raw hairwork dyeing effluent (HDE) was stably recycled up to 95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!