Cell-cycle-dependent protein accumulation by producer and nonproducer murine hybridoma cell lines: a population analysis.

Biotechnol Bioeng

Department of Chemical Engineering and Materials Science and Institute for Advanced Studies in Biological Process Technology, University of Minnesota, Minneapolis 55455, USA.

Published: September 1991

Single-cell rates of accumulation of cellular protein have been determined as a function of total protein content using flow cytometry and population balance equations for exponentially growing murine hybridoma cells in the individual G(1), S(1) and G(2) + M cell cycle phases. A novel flow cytometric technique for the identification of hybridoma cells in mitosis was developed and implemented. The data were obtained from a producer cell line which synthesizes and secretes high levels of monoclonal antibodies, and from a nonproducer clone which does not synthesize and secrete substantial amounts of antibody. The results indicate that the kinetics of single-cell protein accumulation in these two cell lines are considerably different. In particular, low protein content G(1) phase producer cells were characterized by a rate of protein accumulation which was approximately five times higher than the mean rate observed for higher protein content producer cells cycle phase. In contrast, the rate of accumulation of protein increased continuously with total protein content for the G(1) phase nonproducer cells. S phase hybridoma cells were characterized by a considerably lower rate of protein accumulation which did not vary much with protein content for either cell line. Finally, G(2) + M phase producer cells demonstrated a negative rate of protein accumulation which indicates that the rates of protein synthesis. It was hypothesized that these differences in total protein accumulation are caused by differences in monoclonal antibody accumulation. The distribution of rates suggests the need for a segregated approach to the modeling of the kinetics of antibody production in hybridomas.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.260380612DOI Listing

Publication Analysis

Top Keywords

protein accumulation
24
protein content
20
protein
13
total protein
12
hybridoma cells
12
producer cells
12
rate protein
12
accumulation
9
murine hybridoma
8
cell lines
8

Similar Publications

Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.

View Article and Find Full Text PDF

Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation.

Adv Biotechnol (Singap)

April 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.

View Article and Find Full Text PDF

Cdr1 in focus: a personal reflection on multidrug transporter research.

FEMS Yeast Res

January 2025

Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India.

Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux.

View Article and Find Full Text PDF

Molecular and therapeutic insight into ER Stress signaling in NSCLC.

J Drug Target

January 2025

Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India.

Endoplasmic Reticulum (ER) stress is intricately involved in cancer development, progression and response to chemotherapy. ER stress related genes might play an important role in predicting the prognosis in lung adenocarcinoma patients and may be manipulated to improve the treatment outcome and overall survival rate. In this review, we analyzed the contribution of the three major ER stress pathways-IRE1, ATF6, and PERK-in lung cancer pathogenesis via modulation of tumor microenvironment (TME) and processes as metastasis, angiogenesis, apoptosis and N-glycosylation.

View Article and Find Full Text PDF

Detection of chronic wasting disease prions in the farm soil of the Republic of Korea.

mSphere

January 2025

WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea.

Chronic wasting disease (CWD) is a highly contagious prion disease occurring in free-ranging and farmed cervids. CWD continues to spread uncontrolled across North America, and cases continue to be detected almost every year in the Republic of Korea. CWD-infected animals contaminate the soil by releasing infectious prions through their excreta, and shed prions accumulate and remain infectious in the soil for years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!