Activation of the PI3K/Akt pathway protects the heart from ischemia-reperfusion injury (IRI). The phosphatase PTEN is the main negative regulator of this pathway. We hypothesized that reduced PTEN levels could protect against IRI. Isolated perfused mouse hearts from PTEN(+/-) and their littermates PTEN(+/+) (WT), were subjected to 35 min global ischemia and 30 min reperfusion, with and without 2, 4 or 6 cycles ischemic preconditioning (IPC). The end point was infarct size, expressed as a percentage of the myocardium at risk (I/R%). PTEN and Akt levels were determined using Western blot analysis. Unexpectedly, there were no significant differences in infarction between PTEN(+/-) and WT (42.1 +/- 5.0% Vs. 45.6 +/- 3.3%). However, the preconditioning threshold was significantly reduced in the PTEN(+/-) Vs. WT, with 4 cycles of IPC being sufficient to reduce I/R%, compared to 6 cycles in the WT (4 cycles IPC: 29.8. +/- 3.69% in PTEN(+/-) Vs. 45.5. +/- 5.08% in WT, P < 0.01). In addition, the ratio between the phospho/total Akt (Ser473 and Thr308) was slightly but significantly increased in the PTEN(+/-) indicating an upregulation of PI3K/Akt pathway. Interestingly, the levels of the other phosphatases that may negatively regulate the PI3K/Akt pathway (PP2A, SHIP2 and PHLPP) were not significantly different between littermates and PTEN(+/-). In conclusion, PTEN haploinsufficiency alone does not induce cardioprotection in this model; however, it reduces the threshold of protection induced by IPC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00395-008-0735-yDOI Listing

Publication Analysis

Top Keywords

pi3k/akt pathway
12
ischemia-reperfusion injury
8
pten haploinsufficiency
8
cycles ipc
8
pten
6
pten+/-
6
injury cardioprotection
4
cardioprotection investigating
4
investigating pten
4
pten phosphatase
4

Similar Publications

Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.

View Article and Find Full Text PDF

Acute renal injury (AKI) has a high incidence rate and mortality, but current treatment methods are limited. As a kind of nanomaterial with enzyme-like activity, nanozyme has shown outstanding advantages in treating AKI according to recent reports. Herein, we assess the potential of manganese-based nanozymes (MnO-BSA NPs) with excellent biosafety in effectively alleviating AKI.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!