Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acceleration of the wound healing process by using angiogenic peptides has been demonstrated previously. Here we used select laminin-111 peptides, A13 and C16, from the laminin alpha1 and gamma1 chain, respectively, to test whether they are able to stimulate wound healing in a rat full thickness wound model. The 12-mer peptides C16 and A13 are highly angiogenic and bind to integrins alphavbeta3 and alpha5beta1. We show that A13 increases wound re-epithelialization as much as 17% over controls by day 4 and C16 increases coverage by 11%. Contraction of the treated wounds was increased as much as 11% for A13 and 8% for C16 at day 4. No differences were observed at day 7 with either peptide. The peptides also stimulated fibroblast migration in Boyden chamber assays. A13 increased cell migration as much as 2.4-fold on uncoated filters and as much as 16-fold on collagen type IV-coated filters over negative controls. Similarly, C16 also stimulated migration 1.8-fold on uncoated filters and as much as 12-fold on collagen-coated filters. A13 and C16 significantly decreased expression of the pro and active forms of matrix metalloproteinase 2 in foreskin fibroblasts indicating their role in collagen accumulation. We conclude that small bioactive angiogenic peptides can promote dermal wound healing and may offer a new class of stable and chemically manipulable therapeutics for wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707597 | PMC |
http://dx.doi.org/10.1016/j.biocel.2008.05.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!