Block copolymers of the type poly(caprolactone)-b-poly(ethylene oxide) for the preparation and stabilization of nanoemulsions.

Int J Pharm

Université de Lyon, Laboratoire d'Automatique et de Génie des Procédés, LAGEP, UMR CNRS 5007, Bât 308, 43 Bd 11 Novembre, 69622 Villeurbanne Cedex, France.

Published: October 2008

Block copolymers poly(caprolactone)-block-poly(ethylene oxide) are promising non-ionic macromolecular surfactants for the stabilization of emulsions because they display a stronger adsorption and provide an increased long-term stability. But such amphiphilic copolymers should also allow the fabrication of the suspensions according to the emulsification process used. An evaluation of such block copolymers was done regarding the nanoprecipitation and the miniemulsion polymerization processes that both afford aqueous suspensions of nanoparticles. Both the fabrication and the long-term stability were investigated. It was found that the emulsification by means of the nanoprecipitation process was successful when the amphiphilic block copolymer was added into the organic phase. The studies on the structure-activity relationships have shown that a minimum length of the poly(ethylene oxide) block was necessary in order to ensure both the long-term colloidal stability of the suspensions and the instantaneous stability during the preparation process. The length of the hydrophobic block was a parameter of less relevance, but a minimum length was required for the copolymers to be soluble in the organic phase. The miniemulsion polymerization process using block copolymer emulsifiers could be adapted to the incorporation of large loads of vitamin E acetate used as a hydrophobe stabilizer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2008.06.007DOI Listing

Publication Analysis

Top Keywords

block copolymers
12
long-term stability
8
miniemulsion polymerization
8
block copolymer
8
organic phase
8
minimum length
8
block
7
copolymers type
4
type polycaprolactone-b-polyethylene
4
polycaprolactone-b-polyethylene oxide
4

Similar Publications

Lactide, possessing two stereocenters and thus three distinct configurations (DD, DL, and LL), serves as a captivating building block for polymers and self-assembly. Notably, polylactide (PLA) exhibits stereocomplexation, displaying heightened interactions between different configurations compared with interactions within the same configuration. This characteristic renders PLA an intriguing subject for investigating self-assembly behavior.

View Article and Find Full Text PDF

Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals.

View Article and Find Full Text PDF

Spontaneous phase separation of materials is a powerful strategy to generate highly defined 2D nanomorphologies with novel properties and functions. Exemplary are such morphologies in block copolymers or amphiphilic systems, whose formation can be well predicted based on parameters such as volume fraction and shape factor. In contrast, the formation of 2D nanomorphologies is currently unpredictable in materials perfectly defined at the molecular level, in which crystallinity plays a significant role.

View Article and Find Full Text PDF

Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.

View Article and Find Full Text PDF

Size exclusion chromatography-gradient (SEC-Gradient) is a powerful technique to separate polymers by their chemical composition. The stationary phase is first conditioned with a gradient from adsorli to desorli, and polymer samples are injected after the gradient in SEC conditions. Since its first description in 2011 by Schollenberger and Radke, it has never been applied to block copolymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!