A 4-year study was undertaken on the effect of three amendments (biosolid compost (BC), sugar beet lime (SL), and combination of leonardite plus sugar beet lime (LESL)) on reclamation of a moderately trace element-contaminated soil under field conditions. Results showed that organic C increased in BC and LESL treatments. BC and SL treatments increased soil pH and reduced CaCl(2)-extractable metal concentrations more efficiently. At the end of the experiment, CaCl(2)-extractable metal concentrations decreased and were similar in all treatments pointing out the importance of the natural remediation processes in contaminated soils. Addition of amendments showed no clear reduction in EDTA-extractable trace element concentrations, even, BC and LESL subplots showed some little increase of these elements with time. Amendments did not cause any change in total trace element concentration in soil. Addition of amendments could be a successful and reliable long term technique for stabilization of trace elements in contaminated soils at a field scale with minimum maintenance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2008.05.119 | DOI Listing |
Sci Rep
January 2025
Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India.
Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, 30, Novi Sad, 21000, Serbia.
Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
The occurrence and distribution of synthetic phenolic antioxidants (SPAs) originating from mulch film in farmland soils, along with their transformation characteristics and pathways, remain largely unknown. This study is the first to investigate nineteen SPAs and four transformation products (TPs) in farmland soils across China. In film-mulching soils, concentrations of SPAs (median, range: 83.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:
Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants that may pose risks to human health and environmental biota, including soil microbial communities. These risks are further affected by a multitude of factors, including environmental conditions encountered in real-world settings. A comprehensive understanding of how PBDEs transform and microbial communities respond to the exposure under varying environmental conditions is paramount for assessing the ecological risks or identifying potential degraders.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China. Electronic address:
Doxycycline (DOX) and zinc (Zn), are frequently detected in livestock manure. Untreated excrement carries a sizable load of DOX and Zn into the soil, exacerbating agricultural nonpoint source pollution. However, research on the effects of DOX and Zn on soil microbial diversity and the prevalence of resistance genes is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!