Epidemiologic studies suggest that ozone (O(3)) and airborne particulate matter (PM) can interact causing acute respiratory inflammation and other respiratory diseases. Recent studies investigated the hypothesis that the effects of air pollution caused by O(3) and PM are larger than the effect of these two pollutants individually. We investigated the hypothesis that ozone and traffic-related PM (PM(10) and PM(2.5), diesel and gasoline exhaust particles) interact synergistically to produce increasing amounts of highly reactive hydroxyl radicals (HO) in a heterogeneous aqueous mixture at physiological pH. Electron paramagnetic resonance (EPR) and spin trapping were used for the measurements. Results showed that HO radicals are generated by the catalytic action of PM surface area with ozone and that EPR peak intensities are two to three times higher compared to PM samples without ozone. Incubation of the nucleoside 2'-deoxyguanosine (dG) in aqueous mixtures of ozone and PM at pH 7.4 resulted in the hydroxylation at C(8) position of dG. The formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed a 2-2.5-fold increase over control (PM without O(3)). These results suggest that PM and O(3) act synergistically generating a sustained production of reactive HO radicals. Partitioning of O(3) into the particle phase depends on the concentration, hygroscopicity and particle size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2008.05.124 | DOI Listing |
Sci Total Environ
January 2025
Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
The maritime transport sector poses significant air quality concerns, particularly in nearby cities. Ultrafine particles (UFP, diameter < 100 nm) are of particular concern due to their potential health impacts. This study measured particle number concentrations (PNC), size distributions (PNSD), and other pollutants including particulate matter (PM), nitrogen oxides (NO), black carbon (BC), sulfur dioxide (SO) and ozone (O), organic markers and trace elements at a major European harbor and an urban background (UB) location.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY, USA.
In the United States (US), neonatal intensive care units (NICUs) monitor and treat newborns for a variety of adverse health concerns including preterm status, respiratory distress and restricted growth. As such, NICU admission is an integrated measure of neonatal risk. We linked 2018 US national birth registry NICU admission data among singleton births with satellite and modelled air pollution levels for the month prior to birth to examine whether late-pregnancy exposure to ambient air pollutants is associated with adverse neonatal health outcomes.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland.
Air pollution is a pervasive global challenge with profound implications for public health. This review explores the intricate relationship between air pollution and atrial fibrillation (AF), a prevalent cardiac arrhythmia associated with significant morbidity and mortality. Drawing on a comprehensive analysis of the existing literature, this review synthesizes current evidence linking various air pollutants, including particulate matter, nitrogen dioxide, ozone, and carbon monoxide, to the development and exacerbation of AF.
View Article and Find Full Text PDFCurr Opin Neurol
February 2025
University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
Sci Total Environ
December 2024
Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong Special Administrative Region; Division of Atmospheric Sciences, Desert Research Institute, Reno NV89512, United States. Electronic address:
New industrial parks, including fine chemical, medical manufacturers, etc., are emerging in modern cities in China, whereas their emissions and impacts have not been fully illuminated. In this study, ambient volatile organic compounds (VOCs) in Huizhou were measured in three functional zones, namely new industrial, roadside, and residential zones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!