AI Article Synopsis

  • A strong link exists between neuroinflammation and neurodegenerative diseases, making it a key target for treatment.
  • Tripchlorolide, an extract from Tripterygium wilfordii, demonstrated cytotoxic effects on microglia while protecting neurons from inflammation-induced damage.
  • The study found that tripchlorolide reduced key inflammatory mediators in microglia, suggesting it could be an effective therapeutic agent for neurological inflammatory conditions.

Article Abstract

A large body of evidence has suggested a strong association between neuroinflammation and the pathogenesis of many neurodegenerative diseases. Therefore, it is a good target for therapeutic treatment. So far, studies have proven anti-inflammatory herbal medicine and its constituents to be effective in slowing down the neurodegenerative process. The present study tested tripchlorolide, an extract of Tripterygium wilfordii Hook F (TWHF), as a novel agent to suppress inflammatory process in microglia. It showed this novel agent to be cytotoxic at a dose of 20-40 nM to primary microglia and BV-2 microglial cells but not to primary cortical neurons and Neuro-2A cells in vitro. Moreover, tripchlorolide protected primary cortical neurons and Neuro-2A cells from neuroinflammatory toxicity induced by the conditioned media from lipopolysaccharide (LPS)-stimulated microglia, which resulted in a significant decrease in their cell survival. The changes of the inflammatory mediators in this process were further investigated. In the LPS-stimulated microglia, the production of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), nitric oxide (NO), prostaglandin E(2) (PGE(2)), and intracellular superoxide anion (SOA) was markedly attenuated by tripchlorolide at a dose of 1.25-10 nM in a dose-dependent manner. Furthermore, the production of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was also significantly inhibited by tripchlorolide in both mRNA and protein levels. These results suggest that tripchlorolide can protect neuronal cells via a mechanism involving inhibition of inflammatory responses of microglia to pathological stimulations. Therefore, it is potentially a highly effective therapeutic agent in treating neuroninflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2008.05.018DOI Listing

Publication Analysis

Top Keywords

novel agent
8
primary cortical
8
cortical neurons
8
neurons neuro-2a
8
neuro-2a cells
8
lps-stimulated microglia
8
nitric oxide
8
tripchlorolide
6
microglia
6
neuroprotective role
4

Similar Publications

Off-label hypomethylating agents and venetoclax (HMA/VEN) are often used for relapsed and refractory (R/R) AML patients. However, predictors of outcome are elusive. The objective of the current retrospective observational multicenter study of 240 adult patients (median age 68.

View Article and Find Full Text PDF

Albendazole serves as a broad-spectrum anthelmintic medication for treating hydatid cysts and neurocysticercosis. However, its therapeutic effectiveness is limited by poor solubility. Nanocrystals offer a promising technology to address this limitation by enhancing drug solubility.

View Article and Find Full Text PDF

Systemic therapy for metastatic Renal Cell Carcinoma (mRCC) has dramatical-ly improved in the last years because of the use of immunotherapy with checkpoint inhibi-tor combinations with or without targeted therapies against the Vascular Endothelial Growth Factor Receptors (VEGFR). As a result, patients with mRCC have prolonged sur-vival time, but they ultimately develop resistance and the disease progresses, which high-lights the critical need for novel treatment options. The Hypoxia-inducible Factor (HIF) pathway is central to the pathophysiology of ccRCC and von Hippel-Lindau (VHL) disease.

View Article and Find Full Text PDF

Background: Cancer presents a significant global health challenge, necessitating effective treatment strategies. While chemotherapy is widely employed, its non-specific nature can induce adverse effects on normal cells, prompting the exploration of targeted therapies. The 1,2,4-triazole scaffold has emerged as a promising element in anticancer drug development due to its structural diversity and potential to target cancer cells.

View Article and Find Full Text PDF

Heterocyclic compounds are increasingly used in medicinal chemistry because they are the main components of many biological processes and materials. Benzimidazole remains the core center of the heterocyclic chemical group, with essential traits such as six-five-member connected rings and two nitrogen atoms at the 1,3 position in a six-membered benzene and five-membered imidazole- fused ring system. Molecules with benzimidazole derivatives serve important functions as therapeutic agents and have shown excellent results in clinical and biological research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!