AI Article Synopsis

  • Human beta-defensin 2 is an antimicrobial peptide produced by epithelial cells in response to microbes and inflammation, showing a stronger response to Gram-negative bacteria often found in periodontitis.
  • Researchers studied whether Chlamydia pneumoniae can infect and grow in human gingival fibroblasts, and how it affects cytokine production and beta-defensin 2 expression.
  • The study found that viable C. pneumoniae increased the proliferation of gingival fibroblasts and elevated levels of interleukin-6, interleukin-10, and beta-defensin 2, indicating a potential role of these cells in the immune response during periodontitis.

Article Abstract

Human beta-defensin 2 is an antimicrobial peptide that is produced by several epithelial cells after stimulation with micro-organisms and inflammatory mediators. Gram-negative bacteria, which are typically detected in periodontal pockets in periodontitis, elicit a stronger antibacterial peptide response of human beta-defensin 2 by epithelial cells. In this study, we investigated whether Chlamydia pneumoniae is able both to enter and grow in human gingival fibroblasts (HGF), to modify the production of cytokines, and is involved in regulation of beta-defensin 2 expression. Gingival fibroblasts discarded from periodontal procedures on healthy young individuals were infected with viable C. pneumoniae or with heat- or ultraviolet-inactivated organisms at a multiplicity of infection of 4 inclusion-forming units per cell. Our results demonstrate that after 48 h of incubation with viable C. pneumoniae, gingival fibroblasts showed a proliferative response as seen by both colorimetric assay and direct cell count (40% and 45%, respectively). Moreover, cells incubated with viable or ultraviolet light-inactivated C. pneumoniae organisms showed an increase in the levels of interleukin-6, interleukin-10 and human beta-defensin 2 in a time-dependent fashion, while the cells infected with heat-killed bacteria did not show a significant production either of the cytokines or beta-defensin 2 at any time. In conclusion, we demonstrate the correlation between multiplication of C. pneumoniae in human gingival fibroblasts and release of interleukin-6, interleukin-10 and up-regulation of beta-defensin 2, suggesting that gingival fibroblasts may be a periodontium niche for obligate intracellular C. pneumoniae and may play a role in innate gingival immune system and inflammatory response mechanisms of periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2008.04.015DOI Listing

Publication Analysis

Top Keywords

gingival fibroblasts
24
human gingival
12
human beta-defensin
12
chlamydia pneumoniae
8
pneumoniae human
8
epithelial cells
8
production cytokines
8
viable pneumoniae
8
interleukin-6 interleukin-10
8
beta-defensin
7

Similar Publications

A photo-thermal dual crosslinked chitosan-based hydrogel membrane for guided bone regeneration.

Int J Biol Macromol

January 2025

Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:

Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.

View Article and Find Full Text PDF

Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.

View Article and Find Full Text PDF

Objective:  Oral squamous cell carcinoma (OSCC) is the prevailing type of oral cancer, representing poor prognosis and elevated mortality rates. Major risk factors for OSCC include the use of tobacco products, alcohol consumption, betel quid chewing, and genetic mutation. is traditionally consumed by cancer patients to fight against tumor growth.

View Article and Find Full Text PDF

Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures.

Cytotechnology

February 2025

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.

View Article and Find Full Text PDF

RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid.

Bioengineering (Basel)

December 2024

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!