Immunogenicity and tolerance following HIV-1/HBV plant-based oral vaccine administration.

Vaccine

Department of Virology, Unité de Rétrovirologie Moléculaire, CNRS URA 3015, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.

Published: August 2008

Transgenic tobacco plants expressing a HIV-1 polyepitope associated with hepatitis B (HBV) virus-like particles (VLPs) were previously described. It is demonstrated here that oral administration of these transgenic plants to humanized HSB mice to boost DNA-priming can elicit anti-HIV-1 specific CD8+ T cell activation detectable in mesenteric lymph nodes. Nevertheless, a significant regulatory T cell activation was induced in vivo by the vaccination protocols. The balance between tolerance and immunogenicity remains the main concern in the proof of concept of plant-based vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2008.06.059DOI Listing

Publication Analysis

Top Keywords

administration transgenic
8
cell activation
8
immunogenicity tolerance
4
tolerance hiv-1/hbv
4
hiv-1/hbv plant-based
4
plant-based oral
4
oral vaccine
4
vaccine administration
4
transgenic tobacco
4
tobacco plants
4

Similar Publications

The Evolution of Immunosuppressive Therapy in Pig-to-Nonhuman Primate Organ Transplantation.

Transpl Int

January 2025

Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.

View Article and Find Full Text PDF

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

Most rare diseases (RDs) encompass a diverse group of inherited disorders that affect millions of people worldwide. A significant proportion of these diseases are driven by functional haploinsufficiency, which is caused by pathogenic genetic variants. Currently, most treatments for RDs are limited to symptom management, emphasizing the need for therapies that directly address genetic deficiencies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) remains a leading cause of cognitive decline and mortality worldwide, characterized by neurodegeneration, synaptic deficiencies, and neuroinflammation. Despite advancements in early detection, diagnosis, and treatment, AD presents substantial challenges due to its complex pathology, heterogeneity, and the limited efficacy of current therapies. Consequently, there is a pressing need for novel therapeutic agents to target the multifaceted aspects of AD pathology, enhance current treatments, and minimize adverse effects.

View Article and Find Full Text PDF

Fc-binding nanodisc restores antiviral efficacy of antibodies with reduced neutralizing effects against evolving SARS-CoV-2 variants.

J Nanobiotechnology

January 2025

Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

Passive antibody therapies, typically administered via parenteral routes, have played a crucial role in the initial response to the COVID-19 pandemic. However, the ongoing evolution of SARS-CoV-2 has revealed significant limitations of this approach, primarily due to mutational escape and the inadequate delivery of antibodies to the upper respiratory tract. To overcome these challenges, we propose a novel prophylactic strategy involving the intranasal delivery of an antibody in combination with an Fc-binding nanodisc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!