Under hydrodynamic electrochemical conditions with slow cyclic voltammetry sweep rates we have been able to probe catalytic events at the molybdenum active site of sulfite dehydrogenase (SDH) from Starkeya novella adsorbed on an edge plane graphite electrode within a polylysine film. The electrochemically driven catalytic behaviour of SDH mirrors that seen in solution assays suggesting that the adsorbed enzyme retains its native activity. However, at high sulfite concentrations, the voltammetric waveform transforms from the expected sigmoidal profile to a peak-shaped response, similar to that reported for the molybdenum enzymes DMSO reductase and nitrate reductase (NarGHI and NapAB) where a redox reaction at the active site has been associated with a switch to lower activity at high overpotentials. This is the first time a similar phenomenon has been observed in a Mo-containing oxidase/dehydrogenase, which raises a number of interesting mechanistic problems. The potential at which the activity of SDH becomes attenuated only emerges at saturating substrate conditions and occurs at a potential (ca. + 320mV vs NHE) well removed from any known redox couple in the enzyme. These results cannot be explained by the same mechanism adopted for DMSO reductase and nitrate reductase catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2008.06.005 | DOI Listing |
ISME Commun
January 2024
GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
Ferruginous conditions prevailed through Earth's early oceans history, yet our understanding of biogeochemical cycles in anoxic iron-rich, sulfate-poor sediments remains elusive in terms of redox processes and organic matter remineralization. Using comprehensive geochemistry, cell counts, and metagenomic data, we investigated the taxonomic and functional distribution of the microbial subsurface biosphere in Lake Towuti, a stratified ferruginous analogue. Below the zone in which pore water becomes depleted in electron acceptors, cell densities exponentially decreased while microbial assemblages shifted from iron- and sulfate-reducing bacterial populations to fermentative anaerobes and methanogens, mostly selecting Bathyarchaeia below the sulfate reduction zone.
View Article and Find Full Text PDFInorg Chem
December 2024
Aix Marseille Univ, CNRS, BIP UMR7281, IMM, IM2B, Marseille 13009, France.
Mono-pyranopterin-containing sulfite-oxidizing enzymes (SOEs), including eukaryotic sulfite oxidases and homologous prokaryotic sulfite dehydrogenases (SDHs), are molybdenum enzymes that exist in almost all forms of life, where they catalyze the direct oxidation of sulfite into sulfate, playing a key role in protecting cells and organisms against sulfite-induced damage. To decipher their catalytic mechanism, we have previously provided structural and spectroscopic evidence for direct coordination of HPO to the Mo atom at the active site of the SDH from the hyperthermophilic bacterium (SDH), mimicking the proposed sulfate-bound intermediate proposed to be formed during catalysis. In this work, by solving the X-ray crystallographic structure of the unbound enzyme, we resolve the changes in the hydrogen bonding network in the molybdenum environment that enable the stabilization of the previously characterized phosphate adduct.
View Article and Find Full Text PDFMol Genet Metab
October 2024
Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic.
Molybdenum cofactor deficiency type A has successfully been treated in a small number of children with daily intravenous administration of cyclic pyranopterin monophosphate. Pharmacodynamic data for this novel treatment have not been published and alternative dosing intervals have not been explored. We monitored pharmacodynamic biomarkers of sulfite oxidase and xanthine oxidoreductase activity in three patients with MoCD-A for a period of 2 to 9 months after discontinuation of cPMP substitution.
View Article and Find Full Text PDFRice (N Y)
July 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
Preharvest sprouting (PHS) is a serious problem in rice production as it leads to reductions in grain yield and quality. However, the underlying mechanism of PHS in rice remains unclear. In this study, we identified and characterized a preharvest sprouting and seedling lethal (phssl) mutant.
View Article and Find Full Text PDFPhysiol Plant
June 2024
Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China.
D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!