A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative two-photon flow cytometry--in vitro and in vivo. | LitMetric

Quantitative two-photon flow cytometry--in vitro and in vivo.

J Biomed Opt

University of Michigan, Electrical Engineering and Computer Science Department, Center for Ultrafast Optical Science, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA.

Published: September 2008

Flow cytometry is a powerful technique for quantitative characterization of fluorescence in cells. Quantitation is achieved by ensuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow. Two-photon excitation has the advantages that it enables simultaneous excitation of multiple dyes and achieves a very high SNR through simplified filtering and fluorescence background reduction. We demonstrate that two-photon excitation in conjunction with a targeted multidye labeling strategy enables quantitative flow cytometry even under conditions of nonuniform flow, such as may be encountered in simple capillary flow or in vivo. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling cells with targeted nanoparticles containing multiple fluorophores enables normalization of the fluorescence signal and thus quantitative measurements under nonuniform excitation. Flow cytometry using two-photon excitation is demonstrated for detection and differentiation of particles and cells both in vitro in a glass capillary and in vivo in the blood stream of live mice. The technique also enables us to monitor the fluorescent dye labeling dynamics in vivo. In addition, we present a unique two-beam scanning method to conduct cell size measurement in nonuniform flow.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.2931077DOI Listing

Publication Analysis

Top Keywords

flow cytometry
12
two-photon excitation
12
flow
8
nonuniform flow
8
excitation
7
quantitative
4
quantitative two-photon
4
two-photon flow
4
flow cytometry--in
4
cytometry--in vitro
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!