Due to their unique optical properties, optical probes, including metal nanoparticles (NPs) and fluorescent dyes, are increasingly used as labeling tools in biological imaging. Using multiphoton microscopy and fluorescence lifetime imaging (FLIM) at 750-nm excitation, we recorded intensity and FLIM images from gold NPs (30 nm) and the fluorescent dye Alexa 488 (A488) conjugated with monoclonal ACT-1 antibodies as well as Hoechst 33258 (H258) after incubation with the lymphoma cell line (Karpas-299). From the FLIM images, we can easily discriminate the imaging difference between cells and optical probes according to their distinct fluorescence lifetimes (cellular autofluorescence: 1 to 2 ns; gold NPs: <0.02 ns; A488: 3.5 ns; H258: 2.5 ns). The NP-ACT-1 and A488-ACT-1 conjugates were bound homogeneously on the surface of cells, whereas H258 stained the cell nucleus. We demonstrate that the emission intensity of gold NPs is about ten times stronger than that of the autofluorescence of Karpas-299 cells at the same excitation power. Compared with fluorescent dyes, stronger emission is also observed from gold NPs. Together with their high photostability, these observations suggest that gold NPs are a viable alternative to fluorescent dyes for cellular imaging and cancer diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.2942373 | DOI Listing |
Acta Biomater
January 2025
Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, the Netherlands.
Many cardiovascular events are triggered by fibrous cap rupture of an atherosclerotic plaque in arteries. However, cap rupture, including the impact of the cap's structural components, is poorly understood. To obtain better mechanistic insights in a biologically and mechanically controlled environment, we previously developed a tissue-engineered fibrous cap model.
View Article and Find Full Text PDFPhotosynth Res
January 2025
State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.
View Article and Find Full Text PDFACS Photonics
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, United States.
Decoding the principles underlying neuronal information processing necessitates the emergence of techniques and methodologies to monitor multiscale brain networks in behaving animals over long periods of time. Novel advances in biophotonics, specifically progress in multiphoton microscopy, combined with the development of optical indicators for neuronal activity have provided the possibility to concurrently track brain functions at scales ranging from individual neurons to thousands of neurons across connected brain regions. This Review presents state-of-the-art multiphoton imaging modalities and optical indicators for in vivo brain imaging, highlighting recent advancements and current challenges in the field.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG) Royal College of Surgeons Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland.
According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!