We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2912720 | DOI Listing |
Biomimetics (Basel)
January 2025
Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.
With the increasing importance of securing images during network transmission, this paper introduces a novel image encryption algorithm that integrates a 3D chaotic system with V-shaped scrambling techniques. The proposed method begins by constructing a unique 3D chaotic system to generate chaotic sequences for encryption. These sequences determine a random starting point for V-shaped scrambling, which facilitates the transformation of image pixels into quaternary numbers.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Mathematics, Vivekananda College, Kolkata, West Bengal, 700063, India.
The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Nigdi, Pune 411044, India.
Recent advancements in artificial intelligence (AI) have increased interest in intelligent transportation systems, particularly autonomous vehicles. Safe navigation in traffic-heavy environments requires accurate road scene segmentation, yet traditional computer vision methods struggle with complex scenarios. This study emphasizes the role of deep learning in improving semantic segmentation using datasets like the Indian Driving Dataset (IDD), which presents unique challenges in chaotic road conditions.
View Article and Find Full Text PDFSci Rep
January 2025
College of Engineering, Zhejiang Normal University, Jinhua, 321000, China.
The Walrus Optimization (WO) algorithm, as an emerging metaheuristic algorithm, has shown excellent performance in problem-solving, however it still faces issues such as slow convergence and susceptibility to getting trapped in local optima. To this end, the study proposes a novel WO enhanced by quasi-oppositional-based learning and chaotic local search mechanisms, called QOCWO. The study aims to prevent premature convergence to local optima and enhance the diversity of the population by integrating the quasi-oppositional-based learning mechanism into the original Walrus Optimization (WO) algorithm, thereby improving the global search capability and expanding the search range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!