A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energetics and kinetics of the reaction of HOCO with hydrogen atoms. | LitMetric

Energetics and kinetics of the reaction of HOCO with hydrogen atoms.

J Chem Phys

Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.

Published: June 2008

The potential energy surface for the reaction of HOCO radicals with hydrogen atoms has been explored using the CCSD(T)/aug-cc-pVQZ ab initio method. Results show that the reaction occurs via a formic acid (HOC(O)H) intermediate, and produces two types of products: H(2)O+CO and H(2)+CO(2). Reaction enthalpies (0 K) are obtained as -102.0 kcalmol for the H(2)+CO(2) products, and -92.7 kcalmol for H(2)O+CO. Along the reaction pathways, there exists a nearly late transition state for each product channel. However, the transition states locate noticeably below the reactant asymptote. Direct ab initio dynamics calculations are also carried out for studying the kinetics of the H+HOCO reaction. At room temperature, the rate coefficient is predicted to be 1.07x10(-10)cm(3) molec(-1) s(-1) with a negligible activation energy E(a)=0.06 kcalmol, and the branching ratios are estimated to be 0.87 for H(2)+CO(2), and 0.13 for H(2)O+CO. In contrast, the product branching ratios have a strong T dependence. The branching ratio for H(2)O+CO could increase to 0.72 at T=1000 K.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2946696DOI Listing

Publication Analysis

Top Keywords

reaction hoco
8
hydrogen atoms
8
branching ratios
8
reaction
6
energetics kinetics
4
kinetics reaction
4
hoco hydrogen
4
atoms potential
4
potential energy
4
energy surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!