The temporal variation in the Specific Growth Rate (SGR) of natural population of heterotrophic bacterioplankton of the river Cauvery and its four down stream tributaries in Karnataka State was monitored over a period of two years from February 2000 to January 2002. The SGR was calculated by taking into account only the abundance of bacterioplankton at the beginning (0 h) and at the end (48 h) incubation period, at room or river temperature. The mean SGR was less and significantly different in the surface waters of river Kapila, Shimsha, Suvarnavathy and Arkavathy. But it was more and significantly different in river Cauvery when compared to other tributaries. This suggests that the river Cauvery was more favorable habitat for SGR of bacterioplankton than the other four watercourses studied. Investigation of interrelationship between SGR and other bacterial variables showed presence of only one correlation with direct counts of particle bound bacteria in river Arkavathy. Further, the relationship between SGR of bacterioplankton and other environmental variables showed the presence of six correlations in river Shimsha, five in river Suvarnavathy, three in river Cauvery, and two each in river Kapila and river Arkavathy. Negative SGR were recorded on thirteen occasions in river Cauvery followed by eleven in river Shimsha, nine in river Suvarnavathy, seven in river Arkavathy and five in river Kapila, out of fifty SGR determinations. This negative SGR were a result of decrease in the observed bacterial cell counts after 48 h incubation from that of 0 h count. The probable reason for such negative growth rate and dependency of SGR of bacterioplankton and environmental variables has been discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-008-0387-2 | DOI Listing |
Environ Monit Assess
December 2024
Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520 Barrio la Laguna Ticomán, C.P.07340, Del. Gustavo A. Madero, México.
Rivers directly support the development of a region/country; however, globally, these aquatic regions are impacted by recent human activity. During a rainfall event, we monitored the baseline information on the spatial variability of microplastics (MPs) in the Cauvery River in South India. Forty surface water samples from two selected sites were collected between 27 September and 16 October 2022 during the commencement of monsoon which indicates 69 and 43 pieces L of MPs, respectively.
View Article and Find Full Text PDFFront Public Health
November 2024
VIT School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, India.
Heavy metal toxicity is a serious threat to human health due to its bioaccumulation, biomagnification, and persistent nature in the environment including aquatic systems. In the recent past, heavy metal contamination in the environment has occurred due to various anthropogenic sources. The concentration of potentially toxic heavy metals was determined by Atomic Absorption Spectroscopy in Tilapia (), a highly farmed and consumed fish species in southern parts of India.
View Article and Find Full Text PDFChemosphere
November 2024
CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India. Electronic address:
Rivers are critical ecosystems that support biodiversity and local livelihoods. This study aimed to evaluate the effects of metal contamination and anthropogenic activities on microbial and phage community dynamics within major Indian river ecosystems, focusing on the Ganga, Narmada, Cauvery, and Gomti rivers -using metagenomic techniques, Biolog, and ICP-MS analysis. Significant variations in microbial communities were observed both within each river and across the four systems, influenced by ecological factors like geography and hydrology, as well as anthropogenic pressures.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, SC 29208, United States. Electronic address:
Environ Sci Pollut Res Int
October 2024
Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, Chidambaram, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!