Flexion-extension radiographs are commonly used to assess lumbar fusion. Recommended criteria for solid fusion have varied from 1 to 5 degrees of angular motion between vertebrae. Notwithstanding this wide variation, the validity of these criteria have never been biomechanically tested. As a preliminary and initial step, it was the authors' purpose to quantify measurable angular motion after simulating solid lumbar fusion in human cadaver spines. Seven cadaveric spines (L1 to L4) were tested in a radiolucent jig fixed to a servohydraulic testing apparatus. Flexion and extension moments of 10 Nm were applied. Fusion was simulated using metallic implants spanning the L2-L3 motion segment. These included transverse process plates, a spinous process plate, pedicle screw construct, or an anterior vertebral body plate to simulate an intertransverse, interspinous process, facet, and interbody fusions, respectively. Angular movements were measured on lateral radiographs and statistically compared using a repeated measures analysis of variance. Simulated intertransverse fusion resulted in 13+/-4 degrees of motion; interspinous fusion, 9+/-4 degrees; posterior facet fusion, 5+/-3 degrees; and interbody fusion with plate, 3+/-2 degrees. Compared with the intact, only posterior facet fusion and interbody fusion with plate had statistically significantly less motion (P=0.006 and 0.0001, respectively). The amount of radiographically detectable flexion-extension motion with simulated fusions varies widely and seems to be influenced by fusion type. This study documents a range of measurable motion on flexion-extension radiographs after several types of simulated lumbar fusion. However, as the degrees of motion seemed to be high, future studies should use a fusion simulation other than metallic implants that more closely resembles bony arthrodesis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BSD.0b013e31814cf6a2DOI Listing

Publication Analysis

Top Keywords

fusion
13
flexion-extension radiographs
12
lumbar fusion
12
motion flexion-extension
8
simulated lumbar
8
motion
8
angular motion
8
metallic implants
8
degrees motion
8
posterior facet
8

Similar Publications

The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Addressing the issues of a single-feature input channel structure, scarcity of training fault data, and insufficient feature learning capabilities in noisy environments for intelligent diagnostic models of mechanical equipment, we propose a method based on a one-dimensional and two-dimensional dual-channel feature information fusion convolutional neural network (1D_2DIFCNN). By constructing a one-dimensional and two-dimensiona dual-channel feature information fusion convolutional network and introducing a Convolutional Block Attention Mechanism, we utilize Random Overlapping Sampling Technique to process raw vibration signals. The model takes as inputs both one-dimensional data and two-dimensional Continuous Wavelet Transform images.

View Article and Find Full Text PDF

Robust multi-source geographic entities matching by maximizing geometric and semantic similarity.

Sci Rep

December 2024

Department of Geographic Information System, Chinese Academy of Surveying and mapping, Beijing, 100036, China.

Geographic entity matching is an important means for multi-source spatial data fusion and information association and sharing. Corresponding matching methods have been designed by existing studies for different types of entity data characteristics, such as line and area. However, these approaches are often limited in the generalization ability for matching heterogeneous data from multiple sources and the accuracy for complex pattern matching.

View Article and Find Full Text PDF

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!