A mixed binomial Bayesian regression model was used to quantify the relation between nucleotide differences in the VP1 gene of Foot-and-mouth disease virus (FMDV) serotype A, and epidemiologic characteristics of the outbreaks from which the viruses were obtained between January and December 2001 in Argentina. An increase in the probability of different nucleotides between isolates was associated with a longer time between isolation dates, a greater distance between isolation locations, an increase in the difference between attack rates, and an increase in the difference in outbreak durations. The farther apart the outbreak herds were in the southerly and easterly directions, the greater the difference in nucleotide changes. The model accurately predicted genetic distances of isolates obtained in 2001 compared with a 2002 isolate (P < 0.01), which suggested that the predictive modeling approach applied in the present study may be useful in understanding the epidemiology of evolution of FMDV and in forensic analysis of disease epidemics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/104063870802000404 | DOI Listing |
Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck virus hepatitis (DVH), caused by duck hepatitis A virus (DHAV), poses significant challenges to duck farming due to high mortality rates in young ducklings. Despite the widespread use of live attenuated vaccines, the genetic diversity within DHAV strains has diminished their cross-protection efficacy. This study aimed to evaluate the cross-protective efficacy of current DHAV-1 and DHAV-3 vaccines against genetically divergent wild strains.
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Feline calicivirus (FCV) is one of the most widespread pathogens affecting feline animals. Currently, FCV is believed to be divisible into two genotypes, with prevalent strains encompassing both GI and GII. Vaccination is the primary means of preventing FCV infection, yet traditional inactivated or attenuated vaccines theoretically pose potential safety concerns.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.
Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues.
View Article and Find Full Text PDFVet Res
December 2024
Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!