Variation in the VP1 gene of foot-and-mouth disease virus serotype A associated with epidemiological characteristics of outbreaks in the 2001 epizootic in Argentina.

J Vet Diagn Invest

Center for Animal Disease Modeling and Surveillance, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.

Published: July 2008

A mixed binomial Bayesian regression model was used to quantify the relation between nucleotide differences in the VP1 gene of Foot-and-mouth disease virus (FMDV) serotype A, and epidemiologic characteristics of the outbreaks from which the viruses were obtained between January and December 2001 in Argentina. An increase in the probability of different nucleotides between isolates was associated with a longer time between isolation dates, a greater distance between isolation locations, an increase in the difference between attack rates, and an increase in the difference in outbreak durations. The farther apart the outbreak herds were in the southerly and easterly directions, the greater the difference in nucleotide changes. The model accurately predicted genetic distances of isolates obtained in 2001 compared with a 2002 isolate (P < 0.01), which suggested that the predictive modeling approach applied in the present study may be useful in understanding the epidemiology of evolution of FMDV and in forensic analysis of disease epidemics.

Download full-text PDF

Source
http://dx.doi.org/10.1177/104063870802000404DOI Listing

Publication Analysis

Top Keywords

vp1 gene
8
gene foot-and-mouth
8
foot-and-mouth disease
8
disease virus
8
characteristics outbreaks
8
increase difference
8
variation vp1
4
virus serotype
4
serotype associated
4
associated epidemiological
4

Similar Publications

Rhinoviruses and respiratory enteroviruses remain among the leading causes of acute respiratory infections, particularly in children. Little is known about the genetic diversity of enteroviruses and rhinoviruses in pediatric patients with acute respiratory infections in Russia. We assessed the prevalence of human rhinoviruses/enteroviruses (HRV/EV) in 1992 children aged 0 to 17 years hospitalized with acute respiratory infections during the 2023-2024 epidemic season using PCR.

View Article and Find Full Text PDF

The Impact of Genetic Variation on Duck Hepatitis A Virus (DHAV) Vaccine Efficacy: A Comparative Study of DHAV-1 and DHAV-3 Against Emerging Variant Strains.

Vaccines (Basel)

December 2024

Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.

Duck virus hepatitis (DVH), caused by duck hepatitis A virus (DHAV), poses significant challenges to duck farming due to high mortality rates in young ducklings. Despite the widespread use of live attenuated vaccines, the genetic diversity within DHAV strains has diminished their cross-protection efficacy. This study aimed to evaluate the cross-protective efficacy of current DHAV-1 and DHAV-3 vaccines against genetically divergent wild strains.

View Article and Find Full Text PDF

An effectively protective VLP vaccine candidate for both genotypes of feline calicivirus.

Front Immunol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Feline calicivirus (FCV) is one of the most widespread pathogens affecting feline animals. Currently, FCV is believed to be divisible into two genotypes, with prevalent strains encompassing both GI and GII. Vaccination is the primary means of preventing FCV infection, yet traditional inactivated or attenuated vaccines theoretically pose potential safety concerns.

View Article and Find Full Text PDF

αFAP-specific nanobodies mediate a highly precise retargeting of modified AAV2 capsids thereby enabling specific transduction of tumor tissues.

Mol Ther Methods Clin Dev

December 2024

AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.

Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues.

View Article and Find Full Text PDF

Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!