The Bacillus subtilis sigma(W) regulon is induced by different stresses that most probably affect integrity of the cell envelope. The activity of the extracytoplasmic function (ECF) sigma factor sigma(W) is modulated by the transmembrane anti-sigma factor RsiW, which undergoes stress-induced degradation in a process known as regulated intramembrane proteolysis, finally resulting in the release of sigma(W) and the transcription of sigma(W)-controlled genes. Mutations in the ecsA gene, which encodes an ATP binding cassette (ABC) of an ABC transporter of unknown function, block site-2 proteolysis of RsiW by the intramembrane cleaving protease RasP (YluC). In addition, degradation of the cell division protein FtsL, which represents a second RasP substrate, is blocked in an ecsA-negative strain. The defect in sigma(W) induction of an ecsA-knockout strain could be partly suppressed by overproducing RasP. A B. subtilis rasP-knockout strain displayed the same pleiotropic phenotype as an ecsA knockout, namely defects in processing alpha-amylase, in competence development, and in formation of multicellular structures known as biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.2008/018648-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!