In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1159706DOI Listing

Publication Analysis

Top Keywords

return mercury
4
mercury global
4
global perspective
4
perspective messenger's
4
mercury
4
messenger's mercury
4
mercury flyby
4
flyby january
4
january 2008
4
2008 mercury
4

Similar Publications

Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.

View Article and Find Full Text PDF

Regulation of straw-derived DOM and clay mineral complexation on mercury accumulation in vegetables.

Environ Res

November 2024

Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.

Article Synopsis
  • The study investigates how dissolved organic matter (DOM) from straw affects mercury (Hg) dynamics in soil and plants, particularly focusing on its impact on methylmercury (MeHg) accumulation.
  • Results show that straw-derived DOM increases MeHg levels in soil and water spinach, but humified DOM can reduce these levels significantly.
  • Additionally, interactions between humified DOM and clay minerals (like montmorillonite) play a crucial role in either promoting or inhibiting Hg methylation and accumulation in plants.
View Article and Find Full Text PDF

This study investigates the potential of long-wave infrared (LWIR) free-space optical (FSO) transmission using multilevel signals to achieve high spectral efficiency. The FSO transmission system includes a directly modulated-quantum cascade laser (DM-QCL) operating at 9.1 µm and a mercury cadmium telluride (MCT) detector.

View Article and Find Full Text PDF

New insights into aqueous Hg(II) photoreduction from paddy field system to natural water: Gear effect of straw returning and soil tillage.

J Hazard Mater

November 2024

Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China.

Article Synopsis
  • Soil dissolved organic matter (SDOM) affects how divalent mercury (Hg(II)) behaves and its photoreduction in paddy fields, but the impact of straw returning and soil tillage on SDOM composition is not well understood.
  • Long-term straw returning and tillage increase SDOM aromatization and oxygen-containing functional groups, which influence Hg(II) photoreduction rates under varying conditions of mercury concentration.
  • Enhancements in Hg(II) photoreduction (up to about 44.76%) due to these practices suggest that previous estimates of mercury emissions from paddy fields may be inaccurate, highlighting the need for further research on their role in the global mercury cycle.
View Article and Find Full Text PDF

Background: The impact of ultraviolet-C (UV-C) emitter configuration on pathogen attenuation has not been assessed. We hypothesized that emitter configuration would impact UV-C efficacy for () attenuation.

Methods:  carriers (ReadyNow Test Carriers, Stratix Labs Corporation, Saint Paul, MN) inoculated with > 10 American Type Culture Collection (ATCC) 43593 (according to American Society for Testing and Materials (ASTM) 3135 standards) were obtained, and the following experiments were conducted from April to August of 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!