We present a summary of the physical principles and design of the Dynamic Albedo of Neutrons (DAN) instrument onboard NASA's 2009 Mars Science Laboratory (MSL) mission. The DAN instrument will use the method of neutron-neutron activation analysis in a space application to study the abundance and depth distribution of water in the martian subsurface along the path of the MSL rover.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2007.0157DOI Listing

Publication Analysis

Top Keywords

dynamic albedo
8
albedo neutrons
8
neutrons dan
8
nasa's 2009
8
2009 mars
8
mars science
8
science laboratory
8
dan instrument
8
dan experiment
4
experiment nasa's
4

Similar Publications

The 'Third Pole', home to numerous glaciers, serves as vital water reserves for a significant portion of the Asian population and has garnered global attention within the context of climate change due to their highly vulnerable nature. While a general decline in global glacial extent has been observed in recent decades, the pronounced regional imbalances across the Third Pole present a perplexing anomaly. To assess the impact of glacier mass changes in the Gangotri basin, we conducted a comprehensive analysis using remote sensing data to estimate spatially resolved mass changes from 2000 to 2023.

View Article and Find Full Text PDF
Article Synopsis
  • - The study analyzes Early Eocene Arctic climate dynamics using sediments to understand climate patterns without ice, focusing on orbital variability that influenced climate changes during that period.
  • - High-resolution records of lipid biomarkers and pollen indicate that temperature changes were linked to orbital cycles, with significant sea surface temperature increases tied to higher precipitation and nutrient supply in the Arctic Basin.
  • - The research suggests that Arctic climate responses during the Early Eocene were significantly influenced by local insolation, showing stronger temperature variability compared to the deep ocean and tropics, even in the absence of ice-albedo feedbacks.
View Article and Find Full Text PDF

Solar heating of the upper ocean is a primary energy input to the ocean-atmosphere system, and the vertical heating profile is modified by the concentration of phytoplankton in the water, with consequences for sea surface temperature and upper ocean dynamics. Despite the development of increasingly complex modeling approaches for radiative transfer in the atmosphere and upper ocean, the simple parameterizations of radiant heating used in most ocean models can be significantly improved in cases of near-surface stratification. There remains a need for a parameterization that is accurate in the upper meters and contains an explicitly spectral dependence on the concentration of biogenic material, while maintaining the computational simplicity of the parameterizations currently in use.

View Article and Find Full Text PDF

The key locations of freshwater input driving Atlantic Meridional Overturning Circulation (AMOC) slowdown and their climate responses remain inconclusive. Using a state-of-the-art global climate model, we conduct freshwater hosing experiments to reexamine AMOC sensitivity and its climate impacts. The Irminger basin emerges as the most effective region for additional freshwater fluxes, causing the greatest AMOC weakening.

View Article and Find Full Text PDF

Boreal forests form the largest terrestrial biome globally. Climate change is expected to induce large changes in vegetation of high latitude ecosystems, but there is considerable uncertainty about where, when, and how those changes will occur. Such vegetation change produces major feedback to the climate system, including by modifying albedo (reflectivity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!