The recently discovered glycine-rich snow flea antifreeze protein (sfAFP) has no sequence homology with any known proteins. No experimental structure has been reported for this interesting protein molecule. Here we report the total chemical synthesis of the mirror image forms of sfAFP (i.e., L-sfAFP, the native protein, and D-sfAFP, the native protein's enantiomer). The predicted 81 amino acid residue polypeptide chain of sfAFP contains Cys residues at positions 1, 13, 28, and 43 and was prepared from four synthetic peptide segments by sequential native chemical ligation. After purification, the full-length synthetic polypeptide was folded at 4 degrees C to form the sfAFP protein containing two disulfides. Chemically synthesized sfAFP had the expected antifreeze activity in an ice recrystallization inhibition assay. Mirror image D-sfAFP protein was prepared by the same synthetic strategy, using peptide segments made from d-amino acids, and had an identical but opposite-sign CD spectrum. As expected, D-sfAFP displays the same antifreeze properties as L-sfAFP, because ice presents an achiral surface for sfAFP binding. Facile synthetic access to sfAFP will enable determination of its molecular structure and systematic elucidation of the molecular basis of the antifreeze properties of this unique protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756141PMC
http://dx.doi.org/10.1021/ja801352jDOI Listing

Publication Analysis

Top Keywords

mirror image
12
image forms
8
snow flea
8
flea antifreeze
8
antifreeze protein
8
protein prepared
8
total chemical
8
chemical synthesis
8
prepared synthetic
8
peptide segments
8

Similar Publications

Background: Long-term lithium treatment decreases kidney function. However, it remains unclear whether stopping lithium improves kidney function.

Objectives: To study kidney function in patients who stopped and subsequently restarted lithium treatment.

View Article and Find Full Text PDF

Revealing Local Structures of Chiral Molecules via X-ray Circular Dichroism.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

Chirality is crucial due to its role in biological and chemical systems, where molecular handedness impacts structure and function. Chiral molecules with nonsuperimposable mirror images exhibit distinct biological activities pivotal in drug design and catalysis. This theoretical study explores X-ray circular dichroism (XCD) as a tool for probing the local structures of chiral molecules.

View Article and Find Full Text PDF

Introduction: Haemodynamic atrioventricular delay (AVD) optimisation has primarily focussed on signals that are not easy to acquire from a pacing system itself, such as invasive left ventricular catheterisation or arterial blood pressure (ABP). In this study, standard clinical central venous pressure (CVP) signals are tested as a potential alternative.

Methods: Sixteen patients with a temporary pacemaker after cardiac surgery were studied.

View Article and Find Full Text PDF

Research on the cerebellum and its functional organization has significantly expanded over the last decades, expanding our comprehension of its role far beyond motor control, including critical contributions to cognition and affective processing. Notably, the cerebellar lateralization mirrors contralateral brain lateralization, a complex phenomenon that remains unexplored, especially across different stages of life. The present work aims to bridge this gap by providing a comprehensive scoping review of the lateralization of motor, cognitive, and affective functioning within the cerebellum across the lifespan.

View Article and Find Full Text PDF

A key property of our environment is the mirror symmetry of many objects, although symmetry is an abstract global property with no definable shape template, making symmetry identification a challenge for standard template-matching algorithms. We therefore ask whether Deep Neural Networks (DNNs) trained on typical natural environmental images develop a selectivity for symmetry similar to that of the human brain. We tested a DNN trained on such typical natural images with object-free random-dot images of 1, 2, and 4 symmetry axes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!