A new assessment criterion for docking poses is proposed in which experimental electron density is taken into account when evaluating the ability of docking programs to reproduce experimentally observed binding modes. Three docking programs (Gold, Glide, and Fred) were used to generate poses for a set of 88 protein-ligand complexes for which the crystal structure is known. The new criterion is based on the real space R-factor (RSR), which measures how well a group of atoms-in our case the ligand-fits the experimental electron density by comparing that density to the expected density, calculated from the model (i.e., the predicted ligand pose). The RSR-based measure is compared to the traditional criterion, the root-mean-square distance (RMSD) between the docking pose and the binding configuration in the crystallographic model. The results highlight several shortcomings of the RMSD criterion that do not affect the RSR-based measure. Examples illustrate that the RSR-derived approach allows a more meaningful a posteriori assessment of docking methods and results. Practical implications for docking evaluations and for methodological development work in this field are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci800084x | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.
Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Mechanical Engineering, University of Michigan, USA.
The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:
Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!