Thermodynamics of the hydroxyl radical addition to isoprene.

J Phys Chem A

Department of Chemistry, Center for Molecular Design, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.

Published: July 2008

Oxidation of isoprene by the hydroxyl radical leads to tropospheric ozone formation. Consequently, a more complete understanding of this reaction could lead to better models of regional air quality, a better understanding of aerosol formation, and a better understanding of reaction kinetics and dynamics. The most common first step in the oxidation of isoprene is the formation of an adduct, with the hydroxyl radical adding to one of four unsaturated carbon atoms in isoprene. In this paper, we discuss how the initial conformations of isoprene, s-trans and s-gauche, influences the pathways to adduct formation. We explore the formation of pre-reactive complexes at low and high temperatures, which are often invoked to explain the negative temperature dependence of this reaction's kinetics. We show that at higher temperatures the free energy surface indicates that a pre-reactive complex is unlikely, while at low temperatures the complex exists on two reaction pathways. The theoretical results show that at low temperatures all eight pathways possess negative reaction barriers, and reaction energies that range from -36.7 to -23.0 kcal x mol(-1). At temperatures in the lower atmosphere, all eight pathways possess positive reaction barriers that range from 3.8 to 6.0 kcal x mol(-1) and reaction energies that range from -28.8 to -14.4 kcal x mol(-1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2488963PMC
http://dx.doi.org/10.1021/jp801869cDOI Listing

Publication Analysis

Top Keywords

hydroxyl radical
12
kcal mol-1
12
oxidation isoprene
8
understanding reaction
8
better understanding
8
low temperatures
8
pathways possess
8
reaction barriers
8
reaction energies
8
energies range
8

Similar Publications

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Direct Evaluation of Salivary Antioxidant Properties in Patients with Down Syndrome for assessment to Periodontal Disease and Premature Aging.

Free Radic Biol Med

January 2025

Department of Disaster Related Oral Health & Oxidative Stress/ESR Laboratories, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan. Electronic address:

To evaluate oxidative stress involved in Down syndrome periodontal disease and pathological premature aging, reactive oxygen species (ROS) such as superoxide (O) and hydroxyl radical (HO) in human saliva were measured using electron spin resonance (ESR) spectroscopy. The groups consisted of 20 subjects in the Down syndrome (DS) child (DC) group (mean age 11.3 ± 4.

View Article and Find Full Text PDF

A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!