Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water-soluble cubic structure Ag(2)Se (alpha-Ag(2)Se) nanocrystals smaller than 5 nm can be obtained by cation-exchange reaction at room temperature, using water-dispersed ZnSe nanocrystals as precursors, which is achieved by controlling the injection speed of AgNO(3) solutions via a syringe pump in the presence of the stabilizer of trisodium citrate. Meanwhile, the thermal stability of the product Ag(2)Se nanocrystals is studied. The results show that the mean sizes and shapes of the precursor ZnSe and product Ag(2)Se nanocrystals are similar, and Se anion sublattices between them are topotaxial. In addition, no phase transition is observed for the product Ag(2)Se (cubic structure) nanocrystals below 180 degrees C. The present synthetic method based on cation-exchange reactions can also be applied to the syntheses of PbSe and CuSe nanocrystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2008.05.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!