Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The capability of binding enzymes adsorptively to unmodified and silanized silica and glass as well as modified polystyrene carriers was studied for alpha-amylase, beta-amylase, and alpha-chymotrypsin. In most cases a high percentage of protein was bound very firmly under considerable loss of activity. The leakage of protein from the carriers was studied by measuring the intrinsic protein fluorescence on beta-amylase adsorptively bound to aminopropyl silica, aminomethyl, and hexadecylaminomethyl polystyrene. It was compared with the leakage of beta-amylase covalently bound to the same carriers via glutaraldehyde, trichloro-triazine, or benzoquinone. In the absence and in the presence of substrate, at 25 and at 60 degrees C, the leakage rates of the adsorptively bound enzymes were not higher than in the covalently bound systems. The poorest binding stability was found in benzoquinone-coupled beta-amylase derivatives. It is even reduced at higher temperatures, whereas the temperature did not show any remarkable influence on the leakage of the other derivatives. In adsorptively as well as in all the covalently bound systems, the presence of substrate did not promote the protein leakage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.260370311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!