Retention of bile acids within the liver is a primary factor in the pathogenesis of cholestatic liver disorders, which are more common in human infants. The objective of this study was to evaluate developmental changes in mitochondrial factors involved in bile acid-induced hepatocyte injury. Hepatic mitochondria from adult rats (aged 9 wk) underwent a mitochondrial permeability transition (MPT) and release of cytochrome c upon exposure to glycochenodeoxycholic acid. In contrast, mitochondria from young rats (age 6-36 d) were resistant to MPT induction and cytochrome c release. Neither mitochondrial levels of MPT-associated proteins (voltage-dependent anion channel, cyclophilin D, or adenine nucleotide translocase), Bcl-2 family proteins, nor antioxidant enzymes explained this resistance. Mitochondria from young rats contained 2- to 3-fold higher alpha-tocopherol (alpha-TH). In vivo alpha-TH enrichment of adult hepatic mitochondria increased their MPT resistance. Tetra-linoleoyl cardiolipin (TL-CL), the primary molecular species of CL, was reduced in mitochondria of the young rat; however, enrichment with CL and TL-CL only modestly increased their MPT susceptibility. In conclusion, we observed an unexpected resistance in young rats to bile acid induction of mitochondrial cell death pathways, which may be related to developmental differences in membrane composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651029PMC
http://dx.doi.org/10.1203/PDR.0b013e3181841ee1DOI Listing

Publication Analysis

Top Keywords

hepatic mitochondria
12
mitochondria young
12
young rats
12
resistance young
8
young rat
8
bile acid-induced
8
permeability transition
8
increased mpt
8
mitochondria
6
resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!