The functional capacity of biologically active, high-affinity interleukin-2 receptors (IL-2R) was studied by means of interleukin-2 (IL-2) stimulation of blood mononuclear cells (BMC) from 22 patients with inflammatory bowel disease (IBD) and 24 controls. The spontaneous, as well as the IL-2-induced, proliferative responses were significantly decreased in patients with active IBD, whereas the expressions of biologically inactive, low-affinity IL-2R (i.e. TAC antigen or CD25) were significantly increased in the same BMC cultures. In contrast, no significant differences were seen between patients and controls when BMC were stimulated with a nonspecific mitogen (phytohemagglutinin). The results suggest that a downregulation of IL-2 responsiveness may contribute to decreased BMC proliferation in vitro in active IBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1699-0463.1991.tb01256.x | DOI Listing |
PLoS One
January 2025
AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.
T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China.
The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Laboratory of Immunoendocrinology Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Father Muller Medical College, Mangalore, India.
Vitiligo is a depigmenting disorder characterized by melanocyte loss, which results in pigment dilution of the skin. Vitiligo is commonly associated with thyroid disorders and thyroid stimulating hormone (TSH) is a sensitive marker to detect thyroid disorders. S100B is damage associated molecular pattern (DAMP) molecule released when there is melanocyte damage.
View Article and Find Full Text PDFElife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!