Asymmetric delivery and distribution of macromolecules are essential for cell polarity and for cellular functions such as differentiation, division, and signaling. Injury of podocytes, which are polarized epithelial cells, changes the dynamics of the actin meshwork, resulting in foot process retraction and proteinuria. Although the spatiotemporal control of specific protein-protein interactions is crucial for the establishment of cell polarity, the mechanisms controlling polarity-dependent differentiation and division are incompletely understood. In this study, yeast two-hybrid screens were performed using a podocyte cDNA library and the polarity protein PATJ as bait. The protein KIBRA was identified as an interaction partner of PATJ and was localized to podocytes, tubular structures, and collecting ducts. The last four amino acids of KIBRA mediated binding to the eighth PDZ domain of PATJ. In addition, KIBRA directly bound to synaptopodin, an essential organizer of the podocyte cytoskeleton. Stable knockdown of KIBRA in immortalized podocytes impaired directed cell migration, suggesting that KIBRA modulates the motility of podocytes by linking polarity proteins and cytoskeleton-associated protein complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2551571 | PMC |
http://dx.doi.org/10.1681/ASN.2007080916 | DOI Listing |
Cell Rep
October 2024
Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
The WW and C2 domain-containing protein (WWC2) is implicated in several neurological disorders. Here, we demonstrate that WWC2 interacts with inhibitory, but not excitatory, postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses γ-aminobutyric acid type-A receptor (GABAR) incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABAR recycling to the membrane.
View Article and Find Full Text PDFCortex
July 2024
Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
Commun Biol
May 2024
College of Life Sciences, Shandong Agricultural University, Tai'an, China.
Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes.
View Article and Find Full Text PDFWWC2 (WW and C2 domain-containing protein) is implicated in several neurological disorders, however its function in the brain has yet to be determined. Here, we demonstrate that WWC2 interacts with inhibitory but not excitatory postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses GABA R incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABA R recycling to the membrane.
View Article and Find Full Text PDFMol Biol Cell
January 2024
Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637.
The Hippo pathway is an evolutionarily conserved regulator of tissue growth. Multiple Hippo signaling components are regulated via proteolytic degradation. However, how these degradation mechanisms are themselves modulated remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!