Human immunodeficiency virus type 1 (HIV-1) Vif recruits a Cullin 5 ubiquitin ligase that targets APOBEC3 proteins for degradation. Recently, Vif has also been shown to induce cell cycle disturbance in G(2). We show that in contrast to the expression of Vpr, the expression of Vif does not preclude cell division, and therefore, Vif causes delay and not arrest in G(2). We also demonstrate that the interaction of Vif with the ubiquitin ligase is required for cell cycle disruption, as was previously shown for HIV-1 Vpr. The presence of APOBEC3 D/E, F, and G had no influence on Vif-induced alteration of the cell cycle. We conclude that cell cycle delay by Vif is a result of ubiquitination and degradation of a cellular protein that is different from the known APOBEC3 family members.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546900PMC
http://dx.doi.org/10.1128/JVI.00377-08DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
ubiquitin ligase
12
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
cycle delay
8
targets apobec3
8
apobec3 proteins
8
proteins degradation
8
vif
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!