Aims: The present study was designed to test the hypothesis that NADPH oxidase inhibition with apocynin would lower blood pressure and improve endothelial function in spontaneously hypertensive rats (SHRs). Although apocyin effectively dilated arterial segments in vitro, it failed to lower blood pressure or improve endothelial function. Further experiments were performed in normotensive rats and in NADPH oxidase subunit knock-out mice to test if apocynin-induced vasodilation depends on NADPH oxidase inhibition at all.
Methods And Results: SHRs were treated with apocynin orally or i.v. Arterial pressure was recorded directly. Rat and mouse arterial function was investigated in vitro by small vessel wire myography. NADPH oxidase activity was measured in human granulocytes and in rat vascular preparations. Rho kinase activity was determined by Western blot analysis. Apocynin did not reduce arterial pressure acutely in SHR when given at 50, 100, or 150 mg kg(-1) day(-1) orally over 1-week intervals or when given i.v. Apocynin potently inhibited granulocyte NADPH oxidase but not vascular NADPH-oxidase-dependent oxygen radical formation unless exogenous peroxidase was added to vascular preparations. Apocynin dilated rat intrarenal and coronary arteries independently of pharmacological interventions that reduce vascular superoxide radical abundance and actions. Aortic rings from p47phox(-/-) mice were more sensitive to apocynin-induced dilation than wild-type aortic rings. Rho kinase inhibition reduced or prevented the inhibitory effect of apocynin on agonist-induced vasoconstriction and apocynin inhibited the phosphorylation of Rho kinase substrates.
Conclusion: Apocynin per se does not inhibit vascular NADPH-oxidase-dependent superoxide formation. Its in vitro vasodilator actions are not due to NADPH oxidase inhibition but may be explained at least in part by inhibition of Rho kinase activity. The discrepancy between apocynin-induced vasodilation in vitro and the failure of apocynin to lower arterial pressure in SHR suggests opposing effects on arterial pressure-regulating systems in vivo. Its use as a pharmacological tool to investigate vascular NADPH oxidase should be discontinued.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cvr/cvn185 | DOI Listing |
Physiol Rev
January 2025
Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.
The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:
Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.
View Article and Find Full Text PDFJ Nutr
January 2025
USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA. Electronic address:
Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:
Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!