Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a biconjugate gradient (BiCG) method that can significantly improve the performance of the quasi-static finite-difference scheme, which has been widely used to model field induction phenomena in voxel phantoms. The proposed BiCG method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional iterative, successive overrelaxation algorithm. The scheme has been validated against other known solutions on a lossy, multilayered ellipsoid phantom excited by an ideal coil loop. The wide application capability and computational performance of the BiCG method is demonstrated by modeling the exposure of MRI healthcare workers to fields produced by pulsed field gradients. This is an important topic of research in light of the Physical Agents Directive 2004/40/EC because a variety of realistic operator postures near the bore entrance of an MRI system are modeled.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2008.919877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!