In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2008.03.024 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Faculty of the Sea and Environment, Universidad Del Pacífico, Guayaquil, Ecuador.
Cigarette butts are classified as plastic waste due to their composition of cellulose acetate fibers and are commonly found in beach sand. Their persistence in the environment, low biodegradability, and potential to interact with metals and metalloids during the aging process make them a significant subject of interest for research on coastal marine ecosystems. The aim of this study is to investigate the presence of metals such as hexavalent chromium Cr (VI), cadmium (Cd), and the metalloid arsenic (As) in cigarette butts (CBs), cigarette butt fibers (CBFs), and sand on a tourist beach in Cartagena, Colombia.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
The extraction of mineral deposits is often associated with the occurrence of acid mine drainage (AMD), which can persist even after mine closure due to remaining sulfide minerals. This study investigates a 200-year-old abandoned mine and its impacts on nearby water resources. The study area is well known for Kuroko ore deposits located upstream of spring and river water resources.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
This research study critically evaluates the concentrations of selected pharmaceuticals found within wastewater and at various stages within a selected wastewater treatment plant. The study further investigates the effects of seasonal variation, between wet and dry months, on the removal of target analytes. To the best of the authors' knowledge, ivermectin in wastewater has not been investigated in South Africa.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Water Engineering, University of Guilan, Rasht, Iran.
The examination of wastewater and effluents flowing into receiving water bodies is crucial for identifying pollutant sources and implementing scenarios to reduce them. In this study, QUAL2kw was used to identify, assess, and predict the pollutant load of a drainage canal located 6 km away from Anzali Wetland. Initially, the model was calibrated and validated with data collected in 2017.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!