I describe an improved implementation of a previously reported interferometric device, the sampling field sensor (SFS) [Appl. Opt.47, B32-B43 (2008)]. It provides X, Y, and XY shearing interferometric information simultaneously (space multiplexed) with amplitude and polarization information while using time-multiplexed phase shifting. Its simple common-path configuration makes it compact and vibration insensitive, as demonstrated by the ~lambda/125 phase estimation repeatability that was below the coherent noise floor (estimated at ~lambda/50). The SFS may be viewed as an efficient, robust and accurate full-field optical-digital interface, easy to integrate with traditional imaging systems. This is demonstrated by using the sensor as the focal plane array of a transmitted-light microscope in a straightforward setup using an illumination path polarization phase shifter. This work is focused on a qualitative demonstration and presents phase, amplitude, and polarization images of different types of human cheek cells and Caenorhabditiselegans larvae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.47.000d96 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!