Monocyte adhesion to endothelium plays an important role in atherosclerosis. We investigated the effects of micronutrients on monocyte-binding properties of extracellular matrix (ECM) produced by human aortic endothelial cells (AoEC). Confluent cultures of AoEC were exposed to ascorbic acid, quercetin, gotu kola extract (10% asiatic acid), green tea extract (40% epigallocatechin gallate), or a mixture of these micronutrients for 48 hours. AoEC-produced ECM was exposed by differential treatment. U937 monocyte adhesion was assayed by fluorescence. ECM composition was assayed immunochemically and with radiolabeled metabolic precursors. AoEC exposure to micronutrients reduced ECM capacity to bind monocytes in a dose-dependent manner. This effect was accompanied by profound changes in the ECM composition. Correlation analysis revealed that changes in monocyte adhesion to ECM had the strongest positive correlation with ECM content for laminin (CC = 0.9681, P < 0.01), followed by fibronectin, collagens type III, I, and IV, biglycan, heparan sulfate, and elastin. The strongest negative correlation was with chondroitin sulfate (CC = -0.9623, P < 0.01), followed by perlecan and versican. Individual micronutrients had diverse effects on ECM composition and binding properties, and their mixture was the most effective treatment. In conclusion, micronutrient-dependent reduction of monocyte adhesion to endothelium is partly mediated through specific modulation of ECM composition and properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0b013e31817e692f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!