Purpose: Elevated phospholipase D (PLD) activity provides a survival signal in several human cancer cell lines and suppresses apoptosis when cells are subjected to the stress of serum withdrawal. Thus, targeting PLD survival signals has potential to suppress survival in cancer cells that depend on PLD for survival. Honokiol is a compound that suppresses tumor growth in mouse models. The purpose of this study was to investigate the effect of honokiol on PLD survival signals and the Ras dependence of these signals.

Experimental Design: The effect of honokiol upon PLD activity was examined in human cancer cell lines where PLD activity provides a survival signal. The dependence of PLD survival signals on Ras was investigated, as was the effect of honokiol on Ras activation.

Results: We report here that honokiol suppresses PLD activity in human cancer cells where PLD has been shown to suppress apoptosis. PLD activity is commonly elevated in response to the stress of serum withdrawal, and, importantly, the stress-induced increase in PLD activity is selectively suppressed by honokiol. The stress-induced increase in PLD activity was accompanied by increased Ras activation, and the stress-induced increase in PLD activity in MDA-MB-231 breast cancer cells was dependent on a Ras. The PLD activity was also dependent on the GTPases RalA and ADP ribosylation factor. Importantly, honokiol suppressed Ras activation.

Conclusion: The data provided here indicate that honokiol may be a valuable therapeutic reagent for targeting a large number of human cancers that depend on Ras and PLD for their survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759181PMC
http://dx.doi.org/10.1158/1078-0432.CCR-08-0102DOI Listing

Publication Analysis

Top Keywords

pld activity
36
pld survival
20
survival signals
16
human cancer
16
cancer cells
16
pld
15
stress-induced increase
12
increase pld
12
activity
10
honokiol
9

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

University of São Paulo, São Paulo, Brazil, Sao Paulo, São Paulo, Brazil.

Background: Membrane lipid compromise is also related to AD pathology, a large family of enzymes such as phospholipases that act on membrane integrity, cell signaling, and cellular processes is impaired during the disease phase. Membrane integrity is affected by the B amyloid by the pathological process of AD, moreover, releasing neurotoxic enzymes and vesicles consequently losing important neurotransmitters. Dysregulation of phospholipase D (PLD) can disrupt the plasma membrane and potentially contribute to worsening AD pathology.

View Article and Find Full Text PDF

New derivatives of the -decaborate anion [BH-O(CH)O(CH)C(O)-L-OCH] (An) (: L = Trp; : L = His; : L = Met; : L = Ala(2-oxopyrrolidin-3-yl) (Pld) were synthesized and isolated as tetraphenylphosphonium salts (PhP)An. Anions ; ; , and contain a pendant functional group from the L-tryptophan methyl ester, L-histidine methyl ester, L-methionine methyl ester, or methyl 2-amino-3-(2-oxopyrrolidin-3-yl)propanoate (-Trp-OCH, -His-OCH, -Met-OCH, or -Pld-OCH) residue, respectively, bonded with the boron cluster anion through the oxybis[(ethane-2,1-diyl)oxy] spacer. This pacer is formed as a result of the nucleophilic opening of the attached dioxane molecule in the [BHO(CH)O] starting derivative.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities, including visceral obesity, dyslipidemia, and insulin resistance. In this regard, visceral white adipose tissue (vWAT) plays a critical role, influencing energy metabolism, immunomodulation, and oxidative stress. Adipose-derived stem cells (ADSCs) are key players in these processes within vWAT.

View Article and Find Full Text PDF

Chemical Probes for Investigating the Endocannabinoid System.

Curr Top Behav Neurosci

January 2025

Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.

View Article and Find Full Text PDF

Phosphatidic acid as a cofactor of mTORC1 in platinum-based chemoresistance: Mechanisms and therapeutic potential.

Eur J Pharmacol

December 2024

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran. Electronic address:

Platinum-based chemotherapeutics, such as cisplatin and carboplatin, are widely used to treat various malignancies. However, the development of chemoresistance remains a significant challenge, limiting their efficacy. This review explores the multifaceted mechanisms of platinum-based chemoresistance, with a particular focus on the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which plays a critical role in promoting tumor survival and resistance to platinum compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!