Purpose: Exposing human tumor cells to sublethal doses of external beam radiation up-regulates expression of tumor antigen and accessory molecules, rendering tumor cells more susceptible to killing by antigen-specific CTLs. This study explored the possibility that exposure to palliative doses of a radiopharmaceutical agent could alter the phenotype of tumor cells to render them more susceptible to T cell-mediated killing.

Experimental Design: Here, 10 human tumor cell lines (4 prostate, 2 breast, and 4 lung) were exposed to increasing doses of the radiopharmaceutical samarium-153-ethylenediaminetetramethylenephosphonate ((153)Sm-EDTMP) used in cancer patients to treat pain due to bone metastasis. Fluorescence-activated cell sorting analysis and quantitative real-time PCR analysis for expression of five surface molecules and several tumor-associated antigens involved in prostate cancer were done. LNCaP human prostate cancer cells were exposed to (153)Sm-EDTMP and incubated with tumor-associated antigen-specific CTL in a CTL killing assay to determine whether exposure to (153)Sm-EDTMP rendered LNCaP cells more susceptible to T cell-mediated killing.

Results: Tumor cells up-regulated the surface molecules Fas (100% of cell lines up-regulated Fas), carcinoembryonic antigen (90%), mucin-1 (60%), MHC class I (50%), and intercellular adhesion molecule-1 (40%) in response to (153)Sm-EDTMP. Quantitative real-time PCR analysis revealed additional up-regulated tumor antigens. Exposure to (153)Sm-EDTMP rendered LNCaP cells more susceptible to killing by CTLs specific for prostate-specific antigen, carcinoembryonic antigen, and mucin-1.

Conclusions: Doses of (153)Sm-EDTMP equivalent to palliative doses delivered to bone alter the phenotype of tumor cells, suggesting that (153)Sm-EDTMP may work synergistically with immunotherapy to increase the susceptibility of tumor cells to CTL killing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407883PMC
http://dx.doi.org/10.1158/1078-0432.CCR-08-0335DOI Listing

Publication Analysis

Top Keywords

tumor cells
28
phenotype tumor
12
cells susceptible
12
tumor
10
cells
10
human tumor
8
susceptible killing
8
palliative doses
8
doses radiopharmaceutical
8
alter phenotype
8

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!